

OWL-RL Documentation

[image: Original Author DOI] [http://dx.doi.org/10.5281/zenodo.14543] [image: PyPI badge] [https://badge.fury.io/py/owlrl]

[image: OWL-RL Logo] [http://owl-rl.readthedocs.io/]

OWL-RL

A simple implementation of the OWL2 RL Profile, as well as a basic RDFS inference, on top of RDFLib. Based mechanical forward chaining. The distribution contains:

OWL-RL: the Python library. You should copy the directory somewhere into your PYTHONPATH. Alternatively, you can also run the python setup.py install script in the directory.

	scripts/RDFConvertService: can be used as a CGI script to invoke the library. It may have to be adapted to the local server setup.

	scripts/owlrl: script that can be run locally on to transform a file into RDF (on the standard output). Run the script with -h to get the available flags.

The package requires Python version 3.5 or higher; it depends on RDFLib [https://github.com/RDFLib]; version 4.2.2 or higher is required. If you need the python 2.7.x compatible version, see the @/py2 branch in this repository.

For the details on RDFS, see the RDF Semantics Specification [http://www.w3.org/TR/rdf11-mt/]; for OWL 2 RL, see the OWL 2 Profile specification [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

View the OWL-RL documentation online: http://owl-rl.readthedocs.io/

To view the changelog for this software library, see CHANGELOG.rst.

This software is released under the W3C© SOFTWARE NOTICE AND LICENSE. See LICENSE.txt.

Getting Started

	Installation

	Usage

	Indices and tables

Modules

	owlrl
	Package Entry Points

	Some Technical/implementation aspects

	AxiomaticTriples

	Closure

	CombinedClosure

	DatatypeHandling
	AltXSDToPYTHON Table

	owlrl
	Package Entry Points

	Some Technical/implementation aspects

	OWLRLExtras

	RDFSClosure

	RestrictedDatatype

	XsdDatatypes

Installation

Coming soon.

Usage

Coming soon.

Note

Refer to owlrl for package entry details, etc.

Indices and tables

	Index

	Module Index

	Search Page

owlrl

This module is a brute force implementation of the ‘finite’ version of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and of OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules] on the top
of RDFLib (with some caveats, see below). Some extensions to these are also implemented.

Brute force means that, in all cases, simple forward chaining rules are used to extend (recursively) the incoming graph
with all triples that the rule sets permit (ie, the “deductive closure” of the graph is computed).
There is an extra options whether the axiomatic triples are added to the graph (prior to the forward chaining step).
These, typically set the domain and range for properties or define some core classes.
In the case of RDFS, the implementation uses a ‘finite’ version of the axiomatic triples only (as proposed, for example,
by Herman ter Horst). This means that it adds only those rdf:_i type predicates that do appear in the original graph,
thereby keeping this step finite. For OWL 2 RL, OWL 2 does not define axiomatic triples formally; but they can be
deduced from the OWL 2 RDF Based Semantics [http://www.w3.org/TR/owl2-rdf-based-semantics/] document and are listed in Appendix 6 (though informally).

Note

This implementation adds only those triples that refer to OWL terms that are meaningful for the OWL 2 RL case.

Package Entry Points

The main entry point to the package is via the DeductiveClosure class. This class should be
initialized to control the parameters of the deductive closure; the forward chaining is done via the
L{expand<DeductiveClosure.expand>} method.
The simplest way to use the package from an RDFLib application is as follows:

graph = Graph() # creation of an RDFLib graph
...
... # normal RDFLib application, eg, parsing RDF data
...
DeductiveClosure(OWLRL_Semantics).expand(graph) # calculate an OWL 2 RL deductive closure of graph
 # without axiomatic triples

The first argument of the DeductiveClosure initialization can be replaced by other classes, providing different
types of deductive closure; other arguments are also possible. For example:

DeductiveClosure(OWLRL_Extension, rdfs_closure = True, axiomatic_triples = True, datatype_axioms = True).expand(graph)

This will calculate the deductive closure including RDFS and some extensions to OWL 2 RL, and with all possible axiomatic
triples added to the graph (this is about the maximum the package can do…)

The same instance of DeductiveClosure can be used for several graph expansions. In other words, the
expand function does not change any state.

For convenience, a second entry point to the package is provided in the form of a function called
convert_graph(), that expects a directory with various options, including a file name. The function
parses the file, creates the expanded graph, and serializes the result into RDF/XML or Turtle. This function is
particularly useful as an entry point for a CGI call (where the HTML form parameters are in a directory) and is easy to
use with a command line interface. The package distribution contains an example for both.

There are major closure type (ie, semantic closure possibilities); these can be controlled through the appropriate
parameters of the DeductiveClosure class:

	using the RDFS_Semantics class, implementing the RDFS semantics [http://www.w3.org/TR/rdf-mt/].

	using the OWLRL.OWLRL_Semantics class, implementing the OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

	using CombinedClosure.RDFS_OWLRL_Semantics class, implementing a combined semantics of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

In all three cases there are other dimensions that can control the exact closure being generated:

	for convenience, the so called axiomatic triples (see, eg, the axiomatic triples in RDFS [http://www.w3.org/TR/rdf-mt/#rdfs_interp] are, by default, I{not} added to the graph closure to reduce the number of generated triples. These can be controlled through a separate initialization argument.

	similarly, the axiomatic triples for D-entailment are separated.

Some Technical/implementation aspects

The core processing is done in the in the Closure.Core class, which is subclassed by the
RDFSClosure.RDFS_Semantics and the OWLRL.OWLRL_Semantics classes (these two are then, on their turn,
subclassed by the CombinedClosure.RDFS_OWLRL_Semantics class). The core implements the core functionality of
cycling through the rules, whereas the rules themselves are defined and implemented in the subclasses. There are also
methods that are executed only once either at the beginning or at the end of the full processing cycle. Adding axiomatic
triples is handled separately, which allows a finer user control over these features.

Literals must be handled separately. Indeed, the functionality relies on ‘extended’ RDF graphs, that allows literals
to be in a subject position, too. Because RDFLib does not allow that, processing begins by exchanging all literals in
the graph for bnodes (identical literals get the same associated bnode). Processing occurs on these bnodes; at the end
of the process all these bnodes are replaced by their corresponding literals if possible (if the bnode occurs in a
subject position, that triple is removed from the resulting graph). Details of this processing is handled in the
separate Literals.LiteralProxies class.

The OWL specification includes references to datatypes that are not in the core RDFS specification, consequently not
directly implemented by RDFLib. These are added in a separate module of the package.

Problems with Literals with datatypes

The current distribution of RDFLib is fairly poor in handling datatypes, particularly in checking whether a lexical form
of a literal is “proper” as for its declared datatype. A typical example is:

"-1234"^^xsd:nonNegativeInteger

which should not be accepted as valid literal. Because the requirements of OWL 2 RL are much stricter in this respect,
an alternative set of datatype handling (essentially, conversions) had to be implemented (see the XsdDatatypes
module).

The DeductiveClosure class has an additional instance variable whether
the default RDFLib conversion routines should be exchanged against the new ones. If this flag is set to True and
instance creation (this is the default), then the conversion routines are set back to the originals once the expansion
is complete, thereby avoiding to influence older application that may not work properly with the new set of conversion
routines.

If the user wants to use these alternative lexical conversions everywhere in the application, then
the DeductiveClosure.use_improved_datatypes_conversions() method can be invoked.
That method changes the conversion routines and, from that point on, all usage of DeductiveClosure instances
will use the improved conversion methods without resetting them. Ie, the code structure can be something like:

DeductiveClosure().use_improved_datatypes_conversions()
... RDFLib application
DeductiveClosure().expand(graph)
...

The default situation can be set back using the
DeductiveClosure.use_rdflib_datatypes_conversions() call.

It is, however, not required to use these methods at all. I.e., the user can use:

DeductiveClosure(improved_datatypes=False).expand(graph)

which will result in a proper graph expansion except for the datatype specific comparisons which will be incomplete.

	Requires:

	
	RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

	rdflib_jsonld [https://github.com/RDFLib/rdflib-jsonld]

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231]

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.DeductiveClosure(closure_class, improved_datatypes=True, rdfs_closure=False, axiomatic_triples=False, datatype_axioms=False)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Entry point to generate the deductive closure of a graph. The exact choice deductive
closure is controlled by a class reference. The important initialization parameter is the closure_class, a Class
object referring to a subclass of Closure.Core. Although this package includes a number of such subclasses
OWLRL_Semantics, RDFS_Semantics, RDFS_OWLRL_Semantics, and OWLRL_Extension, the user can use his/her
own if additional rules are implemented.

Note that owl:imports statements are not interpreted in this class, that has to be done beforehand on the graph
that is to be expanded.

	Parameters

	
	closure_class (subclass of Closure.Core) – A closure class reference.

	improved_datatypes (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the improved set of lexical-to-Python conversions should be used for datatype handling. See the introduction for more details. Default: True.

	rdfs_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the RDFS closure should also be executed. Default: False.

	axiomatic_triples (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether relevant axiomatic triples are added before chaining, except for datatype axiomatic triples. Default: False.

	datatype_axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether further datatype axiomatic triples are added to the output. Default: false.

	Variables

	improved_datatype_generic – Whether the improved set of lexical-to-Python conversions should be used for datatype handling in general, I.e., not only for a particular instance and not only for inference purposes. Default: False.

	
expand(graph)[source]

	Expand the graph using forward chaining, and with the relevant closure type.

	Parameters

	graph (rdflib.Graph) – The RDF graph.

	
improved_datatype_generic = False

	

	
static use_improved_datatypes_conversions()[source]

	Switch the system to use the improved datatype conversion routines.

	
static use_rdflib_datatypes_conversions()[source]

	Switch the system to use the generic (RDFLib) datatype conversion routines

	
owlrl.convert_graph(options, closureClass=None)[source]

	Entry point for external scripts (CGI or command line) to parse an RDF file(s), possibly execute OWL and/or RDFS
closures, and serialize back the result in some format.

Note that this entry point can be used requiring no entailment at all;
because both the input and the output format for the package can be RDF/XML or Turtle, such usage would
simply mean a format conversion.

If OWL 2 RL processing is required, that also means that the owl:imports statements are interpreted. I.e.,
ontologies can be spread over several files. Note, however, that the output of the process would then include all
imported ontologies, too.

	Parameters

	
	options (object [https://docs.python.org/3/library/functions.html#object]) – Object with specific attributes.

	options.sources (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of uris or file names for the source data; for each one if the name ends with ‘ttl’, it
is considered to be turtle, RDF/XML otherwise (this can be overwritten by the options.iformat, though)

	options.text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Direct Turtle encoding of a graph as a text string (useful, eg, for a CGI call using a text
field).

	options.owlClosure (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no.

	options.rdfsClosure (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no.

	options.owlExtras (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no; whether the extra rules beyond OWL 2 RL are used or not.

	options.axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether relevant axiomatic triples are added before chaining (can be a boolean, or the
strings “yes” or “no”).

	options.daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Further datatype axiomatic triples are added to the output (can be a boolean, or the strings
“yes” or “no”).

	options.format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format, can be “turtle” or “rdfxml”.

	options.iformat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input format, can be “turtle”, “rdfa”, “json”, “rdfxml”, or “auto”. “auto” means that the
suffix of the file is considered: ‘.ttl’. ‘.html’, ‘json’ or ‘.jsonld’ respectively with ‘xml’ as a fallback.

	options.trimming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the extension to OWLRL should also include trimming.

	closureClass (TODO(edmond.chuc@csiro.au): What class is this supposed to be?) – Explicit class reference. If set, this overrides the various different other options to be
used as an extension.

	
owlrl.interpret_owl_imports(iformat, graph)[source]

	Interpret the owl import statements. Essentially, recursively merge with all the objects in the owl import
statement, and remove the corresponding triples from the graph.

This method can be used by an application prior to expansion. It is not done by the the DeductiveClosure
class.

	Parameters

	iformat – Input format; can be one of AUTO, TURTLE, or RDFXML. AUTO means that

the suffix of the file name or URI will decide: ‘.ttl’ means Turtle, RDF/XML otherwise.
:type iformat: str

	Parameters

	graph (RDFLib.Graph) – The RDFLib Graph instance to parse into.

	
owlrl.return_closure_class(owl_closure, rdfs_closure, owl_extras, trimming=False)[source]

	Return the right semantic extension class based on three possible choices (this method is here to help potential
users, the result can be fed into a DeductiveClosure instance at initialization).

	Parameters

	
	owl_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether OWL 2 RL deductive closure should be calculated.

	rdfs_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether RDFS deductive closure should be calculated. In case owl_closure==True, this
parameter should also be used in the initialization of DeductiveClosure.

	owl_extras (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the extra possibilities (rational datatype, etc) should be added to an OWL 2 RL
deductive closure. This parameter has no effect in case owl_closure==False.

	trimming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether extra trimming is done on the OWL RL + Extension output.

	Returns

	Deductive class reference or None.

	Return type

	DeductiveClosure or None

AxiomaticTriples

Axiomatic triples to be (possibly) added to the final graph.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

See also

View the source code AxiomaticTriples.py.

Closure

The generic superclasses for various rule based semantics and the possible extensions.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.Closure.Core(graph, axioms, daxioms, rdfs=False)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Core of the semantics management, dealing with the RDFS and other Semantic triples. The only
reason to have it in a separate class is for an easier maintainability.

This is a common superclass only. In the present module, it is subclassed by
a RDFSClosure.RDFS_Semantics class and a OWLRL.OWLRL_Semantics classes.
There are some methods that are implemented in the subclasses only, ie, this class cannot be used by itself!

	Parameters

	
	graph (rdflib.Graph) – The RDF graph to be extended.

	axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether axioms should be added or not.

	daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether datatype axioms should be added or not.

	rdfs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether RDFS inference is also done (used in subclassed only).

	Variables

	
	IMaxNum – Maximal index of rdf:_i occurrence in the graph.

	graph – The real graph.

	axioms – Whether axioms should be added or not.

	daxioms – Whether datatype axioms should be added or not.

	added_triples – Triples added to the graph, conceptually, during one processing cycle.

	error_messages – Error messages (typically inconsistency messages in OWL RL) found during processing. These
are added to the final graph at the very end as separate BNodes with error messages.

	rdfs – Whether RDFS inference is also done (used in subclassed only).

	
add_axioms()[source]

	Add axioms.

This is only a placeholder and raises an exception by default; subclasses must fill this with real content

	
add_d_axioms()[source]

	Add d axioms.

This is only a placeholder and raises an exception by default; subclasses I{must} fill this with real content

	
add_error(message)[source]

	Add an error message

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error message.

	
closure()[source]

	Generate the closure the graph. This is the real ‘core’.

The processing rules store new triples via the separate method Core.store_triple() which stores
them in the added_triples array. If that array is empty at the end of a cycle,
it means that the whole process can be stopped.

If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).

	
empty_stored_triples()[source]

	Empty the internal store for triples.

	
flush_stored_triples()[source]

	Send the stored triples to the graph, and empty the container.

	
one_time_rules()[source]

	This is only a placeholder; subclasses should fill this with real content. By default, it is just an empty call.
This set of rules is invoked only once and not in a cycle.

	
post_process()[source]

	Do some post-processing step. This method when all processing is done, but before handling possible
errors (ie, the method can add its own error messages). By default, this method is empty, subclasses
can add content to it by overriding it.

	
pre_process()[source]

	Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
subclasses can add content to it by overriding it.

	
rules(t, cycle_num)[source]

	The core processing cycles through every tuple in the graph and dispatches it to the various methods
implementing a specific group of rules. By default, this method raises an exception; indeed, subclasses
must add content to by overriding it.

	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – One triple on which to apply the rules.

	cycle_num (int [https://docs.python.org/3/library/functions.html#int]) – Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
also used locally to collect the bnodes in the graph.

	
store_triple(t)[source]

	In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
internal set (Core.added_triples). (It is important for this to be a set: some of the rules in the
various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
checks whether the tuple is in the final graph already (if yes, it is not added to the set).

The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
added any new triple, and the full processing can stop.

	Parameters

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (s,p,o)) – The triple to be added to the graph, unless it is already there

CombinedClosure

The combined closure: performing both the OWL 2 RL and RDFS closures.

The two are very close but there are some rules in RDFS that are not in OWL 2 RL (eg, the axiomatic
triples concerning the container membership properties). Using this closure class the
OWL 2 RL implementation becomes a full extension of RDFS.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.CombinedClosure.RDFS_OWLRL_Semantics(graph, axioms, daxioms, rdfs=True)[source]

	Bases: owlrl.RDFSClosure.RDFS_Semantics, owlrl.OWLRL.OWLRL_Semantics

Common subclass of the RDFS and OWL 2 RL semantic classes. All methods simply call back
to the functions in the superclasses. This may lead to some unnecessary duplication of terms
and rules, but it it not so bad. Also, the additional identification defined for OWL Full,
ie, Resource being the same as Thing and OWL and RDFS classes being identical are added to the
triple store.

Note that this class is also a possible user extension point: subclasses can be created that
extend the standard functionality by extending this class. This class always} performs RDFS inferences.
Subclasses have to set the self.rdfs flag explicitly to the requested value if that is to be controlled.

	Parameters

	
	graph (rdflib.Graph) – The RDF graph to be extended.

	axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether (non-datatype) axiomatic triples should be added or not.

	daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether datatype axiomatic triples should be added or not.

	rdfs (bool [https://docs.python.org/3/library/functions.html#bool]) – Placeholder flag (used in subclassed only, it is always defaulted to True in this class)

	Variables

	
	full_binding_triples – Additional axiom type triples that are added to the combined semantics; these ‘bind’
the RDFS and the OWL worlds together.

	rdfs – (bool) Whether RDFS inference is to be performed or not. In this class instance the value is always
True, subclasses may explicitly change it at initialization time.

	
add_axioms()[source]

	Add axioms

	
add_d_axioms()[source]

	This is not really complete, because it just uses the comparison possibilities that RDFLib provides.

	
add_error(message)

	Add an error message

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error message.

	
static add_new_datatype(uri, conversion_function, datatype_list, subsumption_dict=None, subsumption_key=None, subsumption_list=None)[source]

	If an extension wants to add new datatypes, this method should be invoked at initialization time.

	Parameters

	
	uri – URI for the new datatypes, like owl_ns[“Rational”].

	conversion_function – A function converting the lexical representation of the datatype to a Python value,
possibly raising an exception in case of unsuitable lexical form.

	datatype_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of datatypes already in use that has to be checked.

	subsumption_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of subsumption hierarchies (indexed by the datatype URI-s).

	subsumption_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key in the dictionary, if None, the uri parameter is used.

	subsumption_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of subsumptions associated to a subsumption key (ie, all datatypes that are
superclasses of the new datatype).

	
closure()

	Generate the closure the graph. This is the real ‘core’.

The processing rules store new triples via the separate method Core.store_triple() which stores
them in the added_triples array. If that array is empty at the end of a cycle,
it means that the whole process can be stopped.

If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).

	
empty_stored_triples()

	Empty the internal store for triples.

	
flush_stored_triples()

	Send the stored triples to the graph, and empty the container.

	
full_binding_triples = [(rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Thing'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Resource')), (rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Class'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Class')), (rdflib.term.URIRef('http://www.w3.org/2002/07/owl#DataRange'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Datatype'))]

	

	
one_time_rules()[source]

	Adds some extra axioms and calls for the d_axiom part of the OWL Semantics.

	
post_process()[source]

	Do some post-processing step. This method when all processing is done, but before handling possible
errors (I.e., the method can add its own error messages). By default, this method is empty, subclasses
can add content to it by overriding it.

	
pre_process()

	Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
subclasses can add content to it by overriding it.

	
restriction_typing_check(v, t)

	Helping method to check whether a type statement is in line with a possible
restriction. This method is invoked by rule “cls-avf” before setting a type
on an allValuesFrom restriction.

The method is a placeholder at this level. It is typically implemented by subclasses for
extra checks, e.g., for datatype facet checks.

	Parameters

	
	v – The resource that is to be ‘typed’.

	t – The targeted type (ie, Class).

	Returns

	Boolean.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rules(t, cycle_num)[source]

	
	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A triple (in the form of a tuple).

	cycle_num (int [https://docs.python.org/3/library/functions.html#int]) – Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
also used locally to collect the bnodes in the graph.

	
store_triple(t)

	In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
internal set (Core.added_triples). (It is important for this to be a set: some of the rules in the
various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
checks whether the tuple is in the final graph already (if yes, it is not added to the set).

The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
added any new triple, and the full processing can stop.

	Parameters

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (s,p,o)) – The triple to be added to the graph, unless it is already there

DatatypeHandling

Most of the XSD datatypes are handled directly by RDFLib. However, in some cases, that is not good enough. There are two
major reasons for this:

	Some datatypes are missing from RDFLib and required by OWL 2 RL and/or RDFS.

	In other cases, though the datatype is present, RDFLib is fairly lax in checking the lexical value of those datatypes. Typical case is boolean.

Some of these deficiencies are handled by this module. All the functions convert the lexical value into a
python datatype (or return the original string if this is not possible) which will be used, e.g.,
for comparisons (equalities). If the lexical value constraints are not met, exceptions are raised.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
owlrl.DatatypeHandling.use_Alt_lexical_conversions()[source]

	Registering the datatypes item for RDFLib, ie, bind the dictionary values. The ‘bind’ method of RDFLib adds
extra datatypes to the registered ones in RDFLib, though the table used here (I.e., AltXSDToPYTHON) actually
overrides all of the default conversion routines. The method also add a Decimal entry to the PythonToXSD list of
RDFLib.

	
owlrl.DatatypeHandling.use_RDFLib_lexical_conversions()[source]

	Restore the original (ie, RDFLib) set of lexical conversion routines.

AltXSDToPYTHON Table

Note

The code below is not extracted automatically from the source code.

If there are any errors, please make a pull request or an issue: https://github.com/RDFLib/OWL-RL

AltXSDToPYTHON = {
 XSD.language: lambda v: _strToVal_Regexp(v, _re_language),
 XSD.NMTOKEN: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U),
 XSD.Name: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U, _re_Name_ex),
 XSD.NCName: lambda v: _strToVal_Regexp(v, _re_NCName, re.U, _re_NCName_ex),
 XSD.token: _strToToken,
 RDF.plainLiteral: _strToPlainLiteral,
 XSD.boolean: _strToBool,
 XSD.decimal: _strToDecimal,
 XSD.anyURI: _strToAnyURI,
 XSD.base64Binary: _strToBase64Binary,
 XSD.double: _strToDouble,
 XSD.float: _strToFloat,
 XSD.byte: lambda v: _strToBoundNumeral(v, _limits_byte, int),
 XSD.int: lambda v: _strToBoundNumeral(v, _limits_int, int),
 XSD.long: lambda v: _strToBoundNumeral(v, _limits_long, int),
 XSD.positiveInteger: lambda v: _strToBoundNumeral(v, _limits_positiveInteger, int),
 XSD.nonPositiveInteger: lambda v: _strToBoundNumeral(v, _limits_nonPositiveInteger, int),
 XSD.negativeInteger: lambda v: _strToBoundNumeral(v, _limits_negativeInteger, int),
 XSD.nonNegativeInteger: lambda v: _strToBoundNumeral(v, _limits_nonNegativeInteger, int),
 XSD.short: lambda v: _strToBoundNumeral(v, _limits_short, int),
 XSD.unsignedByte: lambda v: _strToBoundNumeral(v, _limits_unsignedByte, int),
 XSD.unsignedShort: lambda v: _strToBoundNumeral(v, _limits_unsignedShort, int),
 XSD.unsignedInt: lambda v: _strToBoundNumeral(v, _limits_unsignedInt, int),
 XSD.unsignedLong: lambda v: _strToBoundNumeral(v, _limits_unsignedLong, int),
 XSD.hexBinary: _strToHexBinary,
 XSD.dateTime: lambda v: _strToDateTimeAndStamp(v, False),
 XSD.dateTimeStamp: lambda v: _strToDateTimeAndStamp(v, True),
 RDF.XMLLiteral: _strToXMLLiteral,
 XSD.integer: int,
 XSD.string: lambda v: v,
 RDF.HTML: lambda v: v,
 XSD.normalizedString: lambda v: _strToVal_Regexp(v, _re_token),

 # These are RDFS specific...
 XSD.time: _strToTime,
 XSD.date: _strToDate,
 XSD.gYearMonth: _strTogYearMonth,
 XSD.gYear: _strTogYear,
 XSD.gMonthDay: _strTogMonthDay,
 XSD.gDay: _strTogDay,
 XSD.gMonth: _strTogMonth,
}

See also

View the source code DatatypeHandling.py.

owlrl

This module is a brute force implementation of the ‘finite’ version of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and of OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules] on the top
of RDFLib (with some caveats, see below). Some extensions to these are also implemented.

Brute force means that, in all cases, simple forward chaining rules are used to extend (recursively) the incoming graph
with all triples that the rule sets permit (ie, the “deductive closure” of the graph is computed).
There is an extra options whether the axiomatic triples are added to the graph (prior to the forward chaining step).
These, typically set the domain and range for properties or define some core classes.
In the case of RDFS, the implementation uses a ‘finite’ version of the axiomatic triples only (as proposed, for example,
by Herman ter Horst). This means that it adds only those rdf:_i type predicates that do appear in the original graph,
thereby keeping this step finite. For OWL 2 RL, OWL 2 does not define axiomatic triples formally; but they can be
deduced from the OWL 2 RDF Based Semantics [http://www.w3.org/TR/owl2-rdf-based-semantics/] document and are listed in Appendix 6 (though informally).

Note

This implementation adds only those triples that refer to OWL terms that are meaningful for the OWL 2 RL case.

Package Entry Points

The main entry point to the package is via the DeductiveClosure class. This class should be
initialized to control the parameters of the deductive closure; the forward chaining is done via the
L{expand<DeductiveClosure.expand>} method.
The simplest way to use the package from an RDFLib application is as follows:

graph = Graph() # creation of an RDFLib graph
...
... # normal RDFLib application, eg, parsing RDF data
...
DeductiveClosure(OWLRL_Semantics).expand(graph) # calculate an OWL 2 RL deductive closure of graph
 # without axiomatic triples

The first argument of the DeductiveClosure initialization can be replaced by other classes, providing different
types of deductive closure; other arguments are also possible. For example:

DeductiveClosure(OWLRL_Extension, rdfs_closure = True, axiomatic_triples = True, datatype_axioms = True).expand(graph)

This will calculate the deductive closure including RDFS and some extensions to OWL 2 RL, and with all possible axiomatic
triples added to the graph (this is about the maximum the package can do…)

The same instance of DeductiveClosure can be used for several graph expansions. In other words, the
expand function does not change any state.

For convenience, a second entry point to the package is provided in the form of a function called
convert_graph(), that expects a directory with various options, including a file name. The function
parses the file, creates the expanded graph, and serializes the result into RDF/XML or Turtle. This function is
particularly useful as an entry point for a CGI call (where the HTML form parameters are in a directory) and is easy to
use with a command line interface. The package distribution contains an example for both.

There are major closure type (ie, semantic closure possibilities); these can be controlled through the appropriate
parameters of the DeductiveClosure class:

	using the RDFS_Semantics class, implementing the RDFS semantics [http://www.w3.org/TR/rdf-mt/].

	using the OWLRL.OWLRL_Semantics class, implementing the OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

	using CombinedClosure.RDFS_OWLRL_Semantics class, implementing a combined semantics of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

In all three cases there are other dimensions that can control the exact closure being generated:

	for convenience, the so called axiomatic triples (see, eg, the axiomatic triples in RDFS [http://www.w3.org/TR/rdf-mt/#rdfs_interp] are, by default, I{not} added to the graph closure to reduce the number of generated triples. These can be controlled through a separate initialization argument.

	similarly, the axiomatic triples for D-entailment are separated.

Some Technical/implementation aspects

The core processing is done in the in the Closure.Core class, which is subclassed by the
RDFSClosure.RDFS_Semantics and the OWLRL.OWLRL_Semantics classes (these two are then, on their turn,
subclassed by the CombinedClosure.RDFS_OWLRL_Semantics class). The core implements the core functionality of
cycling through the rules, whereas the rules themselves are defined and implemented in the subclasses. There are also
methods that are executed only once either at the beginning or at the end of the full processing cycle. Adding axiomatic
triples is handled separately, which allows a finer user control over these features.

Literals must be handled separately. Indeed, the functionality relies on ‘extended’ RDF graphs, that allows literals
to be in a subject position, too. Because RDFLib does not allow that, processing begins by exchanging all literals in
the graph for bnodes (identical literals get the same associated bnode). Processing occurs on these bnodes; at the end
of the process all these bnodes are replaced by their corresponding literals if possible (if the bnode occurs in a
subject position, that triple is removed from the resulting graph). Details of this processing is handled in the
separate Literals.LiteralProxies class.

The OWL specification includes references to datatypes that are not in the core RDFS specification, consequently not
directly implemented by RDFLib. These are added in a separate module of the package.

Problems with Literals with datatypes

The current distribution of RDFLib is fairly poor in handling datatypes, particularly in checking whether a lexical form
of a literal is “proper” as for its declared datatype. A typical example is:

"-1234"^^xsd:nonNegativeInteger

which should not be accepted as valid literal. Because the requirements of OWL 2 RL are much stricter in this respect,
an alternative set of datatype handling (essentially, conversions) had to be implemented (see the XsdDatatypes
module).

The DeductiveClosure class has an additional instance variable whether
the default RDFLib conversion routines should be exchanged against the new ones. If this flag is set to True and
instance creation (this is the default), then the conversion routines are set back to the originals once the expansion
is complete, thereby avoiding to influence older application that may not work properly with the new set of conversion
routines.

If the user wants to use these alternative lexical conversions everywhere in the application, then
the DeductiveClosure.use_improved_datatypes_conversions() method can be invoked.
That method changes the conversion routines and, from that point on, all usage of DeductiveClosure instances
will use the improved conversion methods without resetting them. Ie, the code structure can be something like:

DeductiveClosure().use_improved_datatypes_conversions()
... RDFLib application
DeductiveClosure().expand(graph)
...

The default situation can be set back using the
DeductiveClosure.use_rdflib_datatypes_conversions() call.

It is, however, not required to use these methods at all. I.e., the user can use:

DeductiveClosure(improved_datatypes=False).expand(graph)

which will result in a proper graph expansion except for the datatype specific comparisons which will be incomplete.

	Requires:

	
	RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

	rdflib_jsonld [https://github.com/RDFLib/rdflib-jsonld]

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231]

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.DeductiveClosure(closure_class, improved_datatypes=True, rdfs_closure=False, axiomatic_triples=False, datatype_axioms=False)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Entry point to generate the deductive closure of a graph. The exact choice deductive
closure is controlled by a class reference. The important initialization parameter is the closure_class, a Class
object referring to a subclass of Closure.Core. Although this package includes a number of such subclasses
OWLRL_Semantics, RDFS_Semantics, RDFS_OWLRL_Semantics, and OWLRL_Extension, the user can use his/her
own if additional rules are implemented.

Note that owl:imports statements are not interpreted in this class, that has to be done beforehand on the graph
that is to be expanded.

	Parameters

	
	closure_class (subclass of Closure.Core) – A closure class reference.

	improved_datatypes (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the improved set of lexical-to-Python conversions should be used for datatype handling. See the introduction for more details. Default: True.

	rdfs_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the RDFS closure should also be executed. Default: False.

	axiomatic_triples (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether relevant axiomatic triples are added before chaining, except for datatype axiomatic triples. Default: False.

	datatype_axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether further datatype axiomatic triples are added to the output. Default: false.

	Variables

	improved_datatype_generic – Whether the improved set of lexical-to-Python conversions should be used for datatype handling in general, I.e., not only for a particular instance and not only for inference purposes. Default: False.

	
expand(graph)[source]

	Expand the graph using forward chaining, and with the relevant closure type.

	Parameters

	graph (rdflib.Graph) – The RDF graph.

	
improved_datatype_generic = False

	

	
static use_improved_datatypes_conversions()[source]

	Switch the system to use the improved datatype conversion routines.

	
static use_rdflib_datatypes_conversions()[source]

	Switch the system to use the generic (RDFLib) datatype conversion routines

	
owlrl.convert_graph(options, closureClass=None)[source]

	Entry point for external scripts (CGI or command line) to parse an RDF file(s), possibly execute OWL and/or RDFS
closures, and serialize back the result in some format.

Note that this entry point can be used requiring no entailment at all;
because both the input and the output format for the package can be RDF/XML or Turtle, such usage would
simply mean a format conversion.

If OWL 2 RL processing is required, that also means that the owl:imports statements are interpreted. I.e.,
ontologies can be spread over several files. Note, however, that the output of the process would then include all
imported ontologies, too.

	Parameters

	
	options (object [https://docs.python.org/3/library/functions.html#object]) – Object with specific attributes.

	options.sources (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of uris or file names for the source data; for each one if the name ends with ‘ttl’, it
is considered to be turtle, RDF/XML otherwise (this can be overwritten by the options.iformat, though)

	options.text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Direct Turtle encoding of a graph as a text string (useful, eg, for a CGI call using a text
field).

	options.owlClosure (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no.

	options.rdfsClosure (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no.

	options.owlExtras (bool [https://docs.python.org/3/library/functions.html#bool]) – Can be yes or no; whether the extra rules beyond OWL 2 RL are used or not.

	options.axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether relevant axiomatic triples are added before chaining (can be a boolean, or the
strings “yes” or “no”).

	options.daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Further datatype axiomatic triples are added to the output (can be a boolean, or the strings
“yes” or “no”).

	options.format (str [https://docs.python.org/3/library/stdtypes.html#str]) – Output format, can be “turtle” or “rdfxml”.

	options.iformat (str [https://docs.python.org/3/library/stdtypes.html#str]) – Input format, can be “turtle”, “rdfa”, “json”, “rdfxml”, or “auto”. “auto” means that the
suffix of the file is considered: ‘.ttl’. ‘.html’, ‘json’ or ‘.jsonld’ respectively with ‘xml’ as a fallback.

	options.trimming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the extension to OWLRL should also include trimming.

	closureClass (TODO(edmond.chuc@csiro.au): What class is this supposed to be?) – Explicit class reference. If set, this overrides the various different other options to be
used as an extension.

	
owlrl.interpret_owl_imports(iformat, graph)[source]

	Interpret the owl import statements. Essentially, recursively merge with all the objects in the owl import
statement, and remove the corresponding triples from the graph.

This method can be used by an application prior to expansion. It is not done by the the DeductiveClosure
class.

	Parameters

	iformat – Input format; can be one of AUTO, TURTLE, or RDFXML. AUTO means that

the suffix of the file name or URI will decide: ‘.ttl’ means Turtle, RDF/XML otherwise.
:type iformat: str

	Parameters

	graph (RDFLib.Graph) – The RDFLib Graph instance to parse into.

	
owlrl.return_closure_class(owl_closure, rdfs_closure, owl_extras, trimming=False)[source]

	Return the right semantic extension class based on three possible choices (this method is here to help potential
users, the result can be fed into a DeductiveClosure instance at initialization).

	Parameters

	
	owl_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether OWL 2 RL deductive closure should be calculated.

	rdfs_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether RDFS deductive closure should be calculated. In case owl_closure==True, this
parameter should also be used in the initialization of DeductiveClosure.

	owl_extras (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the extra possibilities (rational datatype, etc) should be added to an OWL 2 RL
deductive closure. This parameter has no effect in case owl_closure==False.

	trimming (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether extra trimming is done on the OWL RL + Extension output.

	Returns

	Deductive class reference or None.

	Return type

	DeductiveClosure or None

OWLRLExtras

Extension to OWL 2 RL, ie, some additional rules added to the system from OWL 2 Full. It is implemented through
the OWLRL_Extension class, whose reference has to be passed to the relevant semantic class (i.e., either the OWL 2 RL
or the combined closure class) as an ‘extension’.

The added rules and features are:

	self restriction

	owl:rational datatype

	datatype restrictions via facets

In more details, the rules that are added:

	self restriction 1: ?z owl:hasSelf ?x. ?x owl:onProperty ?p. ?y rdf:type ?z. => ?y ?p ?y.

	self restriction 2: ?z owl:hasSelf ?x. ?x owl:onProperty ?p. ?y ?p ?y. => ?y rdf:type ?z.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.OWLRLExtras.OWLRL_Extension(graph, axioms, daxioms, rdfs=False)[source]

	Bases: owlrl.CombinedClosure.RDFS_OWLRL_Semantics

Additional rules to OWL 2 RL. The initialization method also adds the owl:rational datatype to the set of
allowed datatypes with the _strToRational() function as a conversion between the literal form and a Rational. The
xsd:decimal datatype is also set to be a subclass of owl:rational. Furthermore, the restricted datatypes are
extracted from the graph using a separate method in a different module
(RestrictedDatatype.extract_faceted_datatypes()), and all those datatypes are also added to the set of allowed
datatypes. In the case of the restricted datatypes and extra subsumption relationship is set up between the
restricted and the base datatypes.

	Variables

	
	extra_axioms – Additional axioms that have to be added to the deductive closure (in case the axiomatic triples
are required).

	restricted_datatypes – list of the datatype restriction from RestrictedDatatype.

	
add_axioms()[source]

	Add the OWLRL_Extension.extra_axioms, related to the self restrictions.

	
add_d_axioms()

	This is not really complete, because it just uses the comparison possibilities that RDFLib provides.

	
add_error(message)

	Add an error message

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error message.

	
static add_new_datatype(uri, conversion_function, datatype_list, subsumption_dict=None, subsumption_key=None, subsumption_list=None)

	If an extension wants to add new datatypes, this method should be invoked at initialization time.

	Parameters

	
	uri – URI for the new datatypes, like owl_ns[“Rational”].

	conversion_function – A function converting the lexical representation of the datatype to a Python value,
possibly raising an exception in case of unsuitable lexical form.

	datatype_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of datatypes already in use that has to be checked.

	subsumption_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of subsumption hierarchies (indexed by the datatype URI-s).

	subsumption_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key in the dictionary, if None, the uri parameter is used.

	subsumption_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of subsumptions associated to a subsumption key (ie, all datatypes that are
superclasses of the new datatype).

	
closure()

	Generate the closure the graph. This is the real ‘core’.

The processing rules store new triples via the separate method Core.store_triple() which stores
them in the added_triples array. If that array is empty at the end of a cycle,
it means that the whole process can be stopped.

If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).

	
empty_stored_triples()

	Empty the internal store for triples.

	
extra_axioms = [(rdflib.term.URIRef('http://www.w3.org/2002/07/owl#hasSelf'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#Property')), (rdflib.term.URIRef('http://www.w3.org/2002/07/owl#hasSelf'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#domain'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'))]

	

	
flush_stored_triples()

	Send the stored triples to the graph, and empty the container.

	
full_binding_triples = [(rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Thing'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Resource')), (rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Class'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Class')), (rdflib.term.URIRef('http://www.w3.org/2002/07/owl#DataRange'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Datatype'))]

	

	
one_time_rules()[source]

	This method is invoked only once at the beginning, and prior of, the forward chaining process.

At present, only the L{subsumption} of restricted datatypes<_subsume_restricted_datatypes>} is performed.

	
post_process()

	Do some post-processing step. This method when all processing is done, but before handling possible
errors (I.e., the method can add its own error messages). By default, this method is empty, subclasses
can add content to it by overriding it.

	
pre_process()

	Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
subclasses can add content to it by overriding it.

	
restriction_typing_check(v, t)[source]

	Helping method to check whether a type statement is in line with a possible
restriction. This method is invoked by rule “cls-avf” before setting a type
on an allValuesFrom restriction.

The method is a placeholder at this level. It is typically implemented by subclasses for
extra checks, e.g., for datatype facet checks.

	Parameters

	
	v – the resource that is to be ‘typed’.

	t – the targeted type (i.e., Class).

	Returns

	Boolean.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rules(t, cycle_num)[source]

	Go through the additional rules implemented by this module.

	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A triple (in the form of a tuple).

	cycle_num (int [https://docs.python.org/3/library/functions.html#int]) – Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
also used locally to collect the bnodes in the graph.

	
store_triple(t)

	In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
internal set (Core.added_triples). (It is important for this to be a set: some of the rules in the
various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
checks whether the tuple is in the final graph already (if yes, it is not added to the set).

The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
added any new triple, and the full processing can stop.

	Parameters

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (s,p,o)) – The triple to be added to the graph, unless it is already there

	
class owlrl.OWLRLExtras.OWLRL_Extension_Trimming(graph, axioms, daxioms, rdfs=False)[source]

	Bases: owlrl.OWLRLExtras.OWLRL_Extension

This Class adds only one feature to OWLRL_Extension: to initialize with a trimming flag set to True by
default.

This is pretty experimental and probably contentious: this class removes a number of triples from the Graph at
the very end of the processing steps. These triples are either the by-products of the deductive closure calculation
or are axiom like triples that are added following the rules of OWL 2 RL. While these triples are necessary for
the correct inference of really ‘useful’ triples, they may not be of interest for the application for the end
result. The triples that are removed are of the form (following a SPARQL-like notation):

	?x owl:sameAs ?x, ?x rdfs:subClassOf ?x, ?x rdfs:subPropertyOf ?x, ?x owl:equivalentClass ?x type triples.

	?x rdfs:subClassOf rdf:Resource, ?x rdfs:subClassOf owl:Thing, ?x rdf:type rdf:Resource, owl:Nothing rdfs:subClassOf ?x type triples.

	For a datatype that does not appear explicitly in a type assignments (ie, in a ?x rdf:type dt) the corresponding dt rdf:type owl:Datatype and dt rdf:type owl:DataRange triples, as well as the disjointness statements with other datatypes.

	annotation property axioms.

	a number of axiomatic triples on owl:Thing, owl:Nothing and rdf:Resource (eg, owl:Nothing rdf:type owl:Class, owl:Thing owl:equivalentClass rdf:Resource, etc).

Trimming is the only feature of this class, done in the post_process() step. If users extend OWLRL_Extension,
this class can be safely mixed in via multiple inheritance.

	Parameters

	
	graph (rdflib.Graph) – The RDF graph to be extended.

	axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether (non-datatype) axiomatic triples should be added or not.

	daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether datatype axiomatic triples should be added or not.

	rdfs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether RDFS extension is done.

	
add_axioms()

	Add the OWLRL_Extension.extra_axioms, related to the self restrictions.

	
add_d_axioms()

	This is not really complete, because it just uses the comparison possibilities that RDFLib provides.

	
add_error(message)

	Add an error message

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error message.

	
static add_new_datatype(uri, conversion_function, datatype_list, subsumption_dict=None, subsumption_key=None, subsumption_list=None)

	If an extension wants to add new datatypes, this method should be invoked at initialization time.

	Parameters

	
	uri – URI for the new datatypes, like owl_ns[“Rational”].

	conversion_function – A function converting the lexical representation of the datatype to a Python value,
possibly raising an exception in case of unsuitable lexical form.

	datatype_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of datatypes already in use that has to be checked.

	subsumption_dict (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary of subsumption hierarchies (indexed by the datatype URI-s).

	subsumption_key (str [https://docs.python.org/3/library/stdtypes.html#str]) – Key in the dictionary, if None, the uri parameter is used.

	subsumption_list (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of subsumptions associated to a subsumption key (ie, all datatypes that are
superclasses of the new datatype).

	
closure()

	Generate the closure the graph. This is the real ‘core’.

The processing rules store new triples via the separate method Core.store_triple() which stores
them in the added_triples array. If that array is empty at the end of a cycle,
it means that the whole process can be stopped.

If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).

	
empty_stored_triples()

	Empty the internal store for triples.

	
extra_axioms = [(rdflib.term.URIRef('http://www.w3.org/2002/07/owl#hasSelf'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#type'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#Property')), (rdflib.term.URIRef('http://www.w3.org/2002/07/owl#hasSelf'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#domain'), rdflib.term.URIRef('http://www.w3.org/1999/02/22-rdf-syntax-ns#Property'))]

	

	
flush_stored_triples()

	Send the stored triples to the graph, and empty the container.

	
full_binding_triples = [(rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Thing'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Resource')), (rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Class'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#Class')), (rdflib.term.URIRef('http://www.w3.org/2002/07/owl#DataRange'), rdflib.term.URIRef('http://www.w3.org/2002/07/owl#equivalentClass'), rdflib.term.URIRef('http://www.w3.org/2000/01/rdf-schema#Datatype'))]

	

	
one_time_rules()

	This method is invoked only once at the beginning, and prior of, the forward chaining process.

At present, only the L{subsumption} of restricted datatypes<_subsume_restricted_datatypes>} is performed.

	
post_process()[source]

	Do some post-processing step performing the trimming of the graph. See the OWLRL_Extension_Trimming
class for further details.

	
pre_process()

	Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
subclasses can add content to it by overriding it.

	
restriction_typing_check(v, t)

	Helping method to check whether a type statement is in line with a possible
restriction. This method is invoked by rule “cls-avf” before setting a type
on an allValuesFrom restriction.

The method is a placeholder at this level. It is typically implemented by subclasses for
extra checks, e.g., for datatype facet checks.

	Parameters

	
	v – the resource that is to be ‘typed’.

	t – the targeted type (i.e., Class).

	Returns

	Boolean.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
rules(t, cycle_num)

	Go through the additional rules implemented by this module.

	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A triple (in the form of a tuple).

	cycle_num (int [https://docs.python.org/3/library/functions.html#int]) – Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
also used locally to collect the bnodes in the graph.

	
store_triple(t)

	In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
internal set (Core.added_triples). (It is important for this to be a set: some of the rules in the
various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
checks whether the tuple is in the final graph already (if yes, it is not added to the set).

The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
added any new triple, and the full processing can stop.

	Parameters

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (s,p,o)) – The triple to be added to the graph, unless it is already there

RDFSClosure

This module is brute force implementation of the RDFS semantics on the top of RDFLib (with some caveats, see in the
introductory text).

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.RDFSClosure.RDFS_Semantics(graph, axioms, daxioms, rdfs)[source]

	Bases: owlrl.Closure.Core

RDFS Semantics class, ie, implementation of the RDFS closure graph.

Note

Note that the module does not implement the so called Datatype entailment rules, simply because the
underlying RDFLib does not implement the datatypes (ie, RDFLib will not make the literal “1.00” and “1.00000”
identical, although even with all the ambiguities on datatypes, this I{should} be made equal…).

Also, the so-called extensional entailment rules (Section 7.3.1 in the RDF Semantics document) have not been
implemented either.

The comments and references to the various rule follow the names as used in the RDF Semantics document [http://www.w3.org/TR/rdf-mt/].

	Parameters

	
	graph (rdflib.Graph) – The RDF graph to be extended.

	axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether (non-datatype) axiomatic triples should be added or not.

	daxioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether datatype axiomatic triples should be added or not.

	rdfs (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether RDFS inference is also done (used in subclassed only).

	
add_axioms()[source]

	Add axioms

	
add_d_axioms()[source]

	This is not really complete, because it just uses the comparison possibilities that RDFLib provides.

	
add_error(message)

	Add an error message

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Error message.

	
closure()

	Generate the closure the graph. This is the real ‘core’.

The processing rules store new triples via the separate method Core.store_triple() which stores
them in the added_triples array. If that array is empty at the end of a cycle,
it means that the whole process can be stopped.

If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).

	
empty_stored_triples()

	Empty the internal store for triples.

	
flush_stored_triples()

	Send the stored triples to the graph, and empty the container.

	
one_time_rules()[source]

	Some of the rules in the rule set are axiomatic in nature, meaning that they really have to be added only
once, there is no reason to add these in a cycle. These are performed by this method that is invoked only once
at the beginning of the process.

In this case this is related to a ‘hidden’ same as rules on literals with identical values (though different
lexical values).

	
post_process()

	Do some post-processing step. This method when all processing is done, but before handling possible
errors (ie, the method can add its own error messages). By default, this method is empty, subclasses
can add content to it by overriding it.

	
pre_process()

	Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
subclasses can add content to it by overriding it.

	
rules(t, cycle_num)[source]

	Go through the RDFS entailment rules rdf1, rdfs4-rdfs12, by extending the graph.

	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – A triple (in the form of a tuple).

	cycle_num (int [https://docs.python.org/3/library/functions.html#int]) – Which cycle are we in, starting with 1. Can be used for some (though minor) optimization.

	
store_triple(t)

	In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
internal set (Core.added_triples). (It is important for this to be a set: some of the rules in the
various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
checks whether the tuple is in the final graph already (if yes, it is not added to the set).

The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
added any new triple, and the full processing can stop.

	Parameters

	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] (s,p,o)) – The triple to be added to the graph, unless it is already there

RestrictedDatatype

Module to datatype restrictions, i.e., data ranges.

The module implements the following aspects of datatype restrictions:

	a new datatype is created run-time and added to the allowed and accepted datatypes; literals are checked whether they abide to the restrictions

	the new datatype is defined to be a ‘subClass’ of the restricted datatype

	literals of the restricted datatype and that abide to the restrictions defined by the facets are also assigned to be of the new type

The last item is important to handle the following structures:

ex:RE a owl:Restriction ;
 owl:onProperty ex:p ;
 owl:someValuesFrom [
 a rdfs:Datatype ;
 owl:onDatatype xsd:string ;
 owl:withRestrictions (
 [xsd:minLength "3"^^xsd:integer]
 [xsd:maxLength "6"^^xsd:integer]
)
]
.
ex:q ex:p "abcd"^^xsd:string.

In the case above the system can then infer that ex:q is also of type ex:RE.

Datatype restrictions are used by the OWLRLExtras.OWLRL_Extension extension class.

The implementation is not 100% complete. Some things that an ideal implementation should do are not done yet like:

	checking whether a facet is of a datatype that is allowed for that facet

	handling of non-literals in the facets (ie, if the resource is defined to be of type literal, but whose value is defined via a separate owl:sameAs somewhere else)

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

	
class owlrl.RestrictedDatatype.RestrictedDatatype(type_uri, base_type, facets)[source]

	Bases: owlrl.RestrictedDatatype.RestrictedDatatypeCore

Implementation of a datatype with facets, ie, datatype with restrictions.

	Parameters

	
	type_uri – URI of the datatype being defined.

	base_type – URI of the base datatype, ie, the one being restricted.

	facets – List of (facetURI, value) pairs.

:ivar datatype : The URI for this datatype.

	Variables

	
	base_type – URI of the datatype that is restricted.

	converter – Method to convert a literal of the base type to a Python value (DatatypeHandling.AltXSDToPYTHON).

	minExclusive – Value for the :code`xsd:minExclusive` facet, initialized to None and set to the right value if
a facet is around.

	minInclusive – Value for the xsd:minInclusive facet, initialized to None and set to the right value if
a facet is around.

	maxExclusive – Value for the xsd:maxExclusive facet, initialized to None and set to the right value if
a facet is around.

	maxInclusive – Value for the xsd:maxInclusive facet, initialized to None and set to the right value if
a facet is around.

	minLength – Value for the xsd:minLength facet, initialized to None and set to the right value if a facet
is around.

	maxLength – Value for the xsd:maxLength facet, initialized to None and set to the right value if a facet
is around.

	length – Value for the xsd:length facet, initialized to None and set to the right value if a facet is
around.

	pattern – Array of patterns for the xsd:pattern facet, initialized to [] and set to the right value if a
facet is around.

	langRange – Array of language ranges for the rdf:langRange facet, initialized to [] and set to the right
value if a facet is around.

	check_methods – List of class methods that are relevant for the given base_type.

	toPython – Function to convert a Literal of the specified type to a Python value. Is defined by lambda v:
_lit_to_value(self, v), see _lit_to_value().

	
checkValue(value)[source]

	Check whether the (Python) value abides to the constraints defined by the current facets.

	Parameters

	value – The value to be checked.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
class owlrl.RestrictedDatatype.RestrictedDatatypeCore(type_uri, base_type)[source]

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An ‘abstract’ superclass for datatype restrictions. The instance variables listed here are
used in general, without the specificities of the concrete restricted datatype.

This module defines the RestrictedDatatype class that corresponds to the datatypes and their restrictions
defined in the OWL 2 standard. Other modules may subclass this class to define new datatypes with restrictions.

	Variables

	
	type_uri – The URI for this datatype.

	base_type – URI of the datatype that is restricted.

	toPython – Function to convert a Literal of the specified type to a Python value.

	
checkValue(value)[source]

	Check whether the (Python) value abides to the constraints defined by the current facets.

	Parameters

	value – The value to be checked.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
owlrl.RestrictedDatatype.extract_faceted_datatypes(core, graph)[source]

	Extractions of restricted (i.e., faceted) datatypes from the graph.

	Parameters

	
	core (Closure.Core) – The core closure instance that is being handled.

	graph (RDFLib.Graph) – RDFLib graph.

	Returns

	List of RestrictedDatatype instances.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
owlrl.RestrictedDatatype._lit_to_value(dt, v)[source]

	This method is used to convert a string to a value with facet checking. RDF Literals are converted to
Python values using this method; if there is a problem, an exception is raised (and caught higher
up to generate an error message).

The method is the equivalent of all the methods in the DatatypeHandling module, and is registered
to the system run time, as new restricted datatypes are discovered.

(Technically, the registration is done via a lambda v: _lit_to_value(self,v) setting from within a
RestrictedDatatype instance).

	Parameters

	
	dt (RestrictedDatatype) – Faceted datatype.

	v – Literal to be converted and checked.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – Invalid literal value.

XsdDatatypes

Lists of XSD datatypes and their mutual relationships

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

See also

View the source code XsdDatatypes.py

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 owlrl	

 	
 	
 owlrl.AxiomaticTriples	

 	
 	
 owlrl.Closure	

 	
 	
 owlrl.CombinedClosure	

 	
 	
 owlrl.DatatypeHandling	

 	
 	
 owlrl.OWLRLExtras	

 	
 	
 owlrl.RDFSClosure	

 	
 	
 owlrl.RestrictedDatatype	

 	
 	
 owlrl.XsdDatatypes	

Index

 _
 | A
 | C
 | D
 | E
 | F
 | I
 | O
 | P
 | R
 | S
 | U

_

 	
 	__init__() (owlrl.DeductiveClosure method)

 	
 	_lit_to_value() (in module owlrl.RestrictedDatatype)

A

 	
 	add_axioms() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	add_d_axioms() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	
 	add_error() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	add_new_datatype() (owlrl.CombinedClosure.RDFS_OWLRL_Semantics static method)

 	(owlrl.OWLRLExtras.OWLRL_Extension static method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming static method)

C

 	
 	checkValue() (owlrl.RestrictedDatatype.RestrictedDatatype method)

 	(owlrl.RestrictedDatatype.RestrictedDatatypeCore method)

 	closure() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	
 	convert_graph() (in module owlrl), [1]

 	Core (class in owlrl.Closure)

D

 	
 	DeductiveClosure (class in owlrl), [1], [2]

E

 	
 	empty_stored_triples() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	
 	expand() (owlrl.DeductiveClosure method), [1]

 	extra_axioms (owlrl.OWLRLExtras.OWLRL_Extension attribute)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming attribute)

 	extract_faceted_datatypes() (in module owlrl.RestrictedDatatype)

F

 	
 	flush_stored_triples() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	
 	full_binding_triples (owlrl.CombinedClosure.RDFS_OWLRL_Semantics attribute)

 	(owlrl.OWLRLExtras.OWLRL_Extension attribute)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming attribute)

I

 	
 	improved_datatype_generic (owlrl.DeductiveClosure attribute), [1]

 	
 	interpret_owl_imports() (in module owlrl), [1]

O

 	
 	one_time_rules() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	owlrl (module), [1], [2]

 	owlrl.AxiomaticTriples (module)

 	owlrl.Closure (module), [1]

 	
 	owlrl.CombinedClosure (module)

 	owlrl.DatatypeHandling (module)

 	owlrl.OWLRLExtras (module)

 	owlrl.RDFSClosure (module)

 	owlrl.RestrictedDatatype (module)

 	owlrl.XsdDatatypes (module)

 	OWLRL_Extension (class in owlrl.OWLRLExtras)

 	OWLRL_Extension_Trimming (class in owlrl.OWLRLExtras)

P

 	
 	post_process() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

 	
 	pre_process() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

R

 	
 	RDFS_OWLRL_Semantics (class in owlrl.CombinedClosure)

 	RDFS_Semantics (class in owlrl.RDFSClosure)

 	RestrictedDatatype (class in owlrl.RestrictedDatatype)

 	RestrictedDatatypeCore (class in owlrl.RestrictedDatatype)

 	restriction_typing_check() (owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	
 	return_closure_class() (in module owlrl), [1]

 	rules() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

S

 	
 	store_triple() (owlrl.Closure.Core method)

 	(owlrl.CombinedClosure.RDFS_OWLRL_Semantics method)

 	(owlrl.OWLRLExtras.OWLRL_Extension method)

 	(owlrl.OWLRLExtras.OWLRL_Extension_Trimming method)

 	(owlrl.RDFSClosure.RDFS_Semantics method)

U

 	
 	use_Alt_lexical_conversions() (in module owlrl.DatatypeHandling)

 	use_improved_datatypes_conversions() (owlrl.DeductiveClosure static method), [1]

 	
 	use_rdflib_datatypes_conversions() (owlrl.DeductiveClosure static method), [1]

 	use_RDFLib_lexical_conversions() (in module owlrl.DatatypeHandling)

AxiomaticTriples.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

	# -*- coding: utf-8 -*-
#
"""
Axiomatic triples to be (possibly) added to the final graph.

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

from rdflib.namespace import OWL, RDF, RDFS, XSD

Simple RDF axiomatic triples (typing of subject, predicate, first, rest, etc)
_Simple_RDF_axiomatic_triples = [
 (RDF.type, RDF.type, RDF.Property),
 (RDF.subject, RDF.type, RDF.Property),
 (RDF.predicate, RDF.type, RDF.Property),
 (RDF.object, RDF.type, RDF.Property),
 (RDF.first, RDF.type, RDF.Property),
 (RDF.rest, RDF.type, RDF.Property),
 (RDF.value, RDF.type, RDF.Property),
 (RDF.nil, RDF.type, RDF.List),
]

RDFS axiomatic triples (domain and range, as well as class setting for a number of RDFS symbols)
_RDFS_axiomatic_triples = [
 (RDF.type, RDFS.domain, RDFS.Resource),
 (RDFS.domain, RDFS.domain, RDF.Property),
 (RDFS.range, RDFS.domain, RDF.Property),
 (RDFS.subPropertyOf, RDFS.domain, RDF.Property),
 (RDFS.subClassOf, RDFS.domain, RDFS.Class),
 (RDF.subject, RDFS.domain, RDF.Statement),
 (RDF.predicate, RDFS.domain, RDF.Statement),
 (RDF.object, RDFS.domain, RDF.Statement),
 (RDFS.member, RDFS.domain, RDFS.Resource),
 (RDF.first, RDFS.domain, RDF.List),
 (RDF.rest, RDFS.domain, RDF.List),
 (RDFS.seeAlso, RDFS.domain, RDFS.Resource),
 (RDFS.isDefinedBy, RDFS.domain, RDFS.Resource),
 (RDFS.comment, RDFS.domain, RDFS.Resource),
 (RDFS.label, RDFS.domain, RDFS.Resource),
 (RDF.value, RDFS.domain, RDFS.Resource),
 (RDF.Property, RDF.type, RDFS.Class),
 (RDF.type, RDFS.range, RDFS.Class),
 (RDFS.domain, RDFS.range, RDFS.Class),
 (RDFS.range, RDFS.range, RDFS.Class),
 (RDFS.subPropertyOf, RDFS.range, RDF.Property),
 (RDFS.subClassOf, RDFS.range, RDFS.Class),
 (RDF.subject, RDFS.range, RDFS.Resource),
 (RDF.predicate, RDFS.range, RDFS.Resource),
 (RDF.object, RDFS.range, RDFS.Resource),
 (RDFS.member, RDFS.range, RDFS.Resource),
 (RDF.first, RDFS.range, RDFS.Resource),
 (RDF.rest, RDFS.range, RDF.List),
 (RDFS.seeAlso, RDFS.range, RDFS.Resource),
 (RDFS.isDefinedBy, RDFS.range, RDFS.Resource),
 (RDFS.comment, RDFS.range, RDFS.Literal),
 (RDFS.label, RDFS.range, RDFS.Literal),
 (RDF.value, RDFS.range, RDFS.Resource),
 (RDF.Alt, RDFS.subClassOf, RDFS.Container),
 (RDF.Bag, RDFS.subClassOf, RDFS.Container),
 (RDF.Seq, RDFS.subClassOf, RDFS.Container),
 (RDFS.ContainerMembershipProperty, RDFS.subClassOf, RDF.Property),
 (RDFS.isDefinedBy, RDFS.subPropertyOf, RDFS.seeAlso),
 (RDF.XMLLiteral, RDF.type, RDFS.Datatype),
 (RDF.XMLLiteral, RDFS.subClassOf, RDFS.Literal),
 (RDFS.Datatype, RDFS.subClassOf, RDFS.Class),
 # rdfs valid triples; these would be inferred by the RDFS expansion, but it may make things
 # a bit faster to add these upfront
 (RDFS.Resource, RDF.type, RDFS.Class),
 (RDFS.Class, RDF.type, RDFS.Class),
 (RDFS.Literal, RDF.type, RDFS.Class),
 (RDF.XMLLiteral, RDF.type, RDFS.Class),
 (RDFS.Datatype, RDF.type, RDFS.Class),
 (RDF.Seq, RDF.type, RDFS.Class),
 (RDF.Bag, RDF.type, RDFS.Class),
 (RDF.Alt, RDF.type, RDFS.Class),
 (RDFS.Container, RDF.type, RDFS.Class),
 (RDF.List, RDF.type, RDFS.Class),
 (RDFS.ContainerMembershipProperty, RDF.type, RDFS.Class),
 (RDF.Property, RDF.type, RDFS.Class),
 (RDF.Statement, RDF.type, RDFS.Class),
 (RDFS.domain, RDF.type, RDF.Property),
 (RDFS.range, RDF.type, RDF.Property),
 (RDFS.subPropertyOf, RDF.type, RDF.Property),
 (RDFS.subClassOf, RDF.type, RDF.Property),
 (RDFS.member, RDF.type, RDF.Property),
 (RDFS.seeAlso, RDF.type, RDF.Property),
 (RDFS.isDefinedBy, RDF.type, RDF.Property),
 (RDFS.comment, RDF.type, RDF.Property),
 (RDFS.label, RDF.type, RDF.Property),
]

RDFS Axiomatic Triples all together
RDFS_Axiomatic_Triples = _Simple_RDF_axiomatic_triples + _RDFS_axiomatic_triples

RDFS D-entailement triples, ie, possible subclassing of various datatypes
RDFS_D_Axiomatic_Triples_subclasses = [
 # See http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/#built-in-datatypes
 (XSD.decimal, RDFS.subClassOf, RDFS.Literal),
 (XSD.integer, RDFS.subClassOf, XSD.decimal),
 (XSD.long, RDFS.subClassOf, XSD.integer),
 (XSD.int, RDFS.subClassOf, XSD.long),
 (XSD.short, RDFS.subClassOf, XSD.int),
 (XSD.byte, RDFS.subClassOf, XSD.short),
 (XSD.nonNegativeInteger, RDFS.subClassOf, XSD.integer),
 (XSD.positiveInteger, RDFS.subClassOf, XSD.nonNegativeInteger),
 (XSD.unsignedLong, RDFS.subClassOf, XSD.nonNegativeInteger),
 (XSD.unsignedInt, RDFS.subClassOf, XSD.unsignedLong),
 (XSD.unsignedShort, RDFS.subClassOf, XSD.unsignedInt),
 (XSD.unsignedByte, RDFS.subClassOf, XSD.unsignedShort),
 (XSD.nonPositiveInteger, RDFS.subClassOf, XSD.integer),
 (XSD.negativeInteger, RDFS.subClassOf, XSD.nonPositiveInteger),
 (XSD.normalizedString, RDFS.subClassOf, XSD.string),
 (XSD.token, RDFS.subClassOf, XSD.normalizedString),
 (XSD.language, RDFS.subClassOf, XSD.token),
 (XSD.Name, RDFS.subClassOf, XSD.token),
 (XSD.NMTOKEN, RDFS.subClassOf, XSD.token),
 (XSD.NCName, RDFS.subClassOf, XSD.Name),
 (XSD.dateTimeStamp, RDFS.subClassOf, XSD.dateTime),
]

#
RDFS_D_Axiomatic_Triples_types = [
 (XSD.integer, RDF.type, RDFS.Datatype),
 (XSD.decimal, RDF.type, RDFS.Datatype),
 (XSD.nonPositiveInteger, RDF.type, RDFS.Datatype),
 (XSD.nonPositiveInteger, RDF.type, RDFS.Datatype),
 (XSD.positiveInteger, RDF.type, RDFS.Datatype),
 (XSD.positiveInteger, RDF.type, RDFS.Datatype),
 (XSD.long, RDF.type, RDFS.Datatype),
 (XSD.int, RDF.type, RDFS.Datatype),
 (XSD.short, RDF.type, RDFS.Datatype),
 (XSD.byte, RDF.type, RDFS.Datatype),
 (XSD.unsignedLong, RDF.type, RDFS.Datatype),
 (XSD.unsignedInt, RDF.type, RDFS.Datatype),
 (XSD.unsignedShort, RDF.type, RDFS.Datatype),
 (XSD.unsignedByte, RDF.type, RDFS.Datatype),
 (XSD.float, RDF.type, RDFS.Datatype),
 (XSD.double, RDF.type, RDFS.Datatype),
 (XSD.string, RDF.type, RDFS.Datatype),
 (XSD.normalizedString, RDF.type, RDFS.Datatype),
 (XSD.token, RDF.type, RDFS.Datatype),
 (XSD.language, RDF.type, RDFS.Datatype),
 (XSD.Name, RDF.type, RDFS.Datatype),
 (XSD.NCName, RDF.type, RDFS.Datatype),
 (XSD.NMTOKEN, RDF.type, RDFS.Datatype),
 (XSD.boolean, RDF.type, RDFS.Datatype),
 (XSD.hexBinary, RDF.type, RDFS.Datatype),
 (XSD.base64Binary, RDF.type, RDFS.Datatype),
 (XSD.anyURI, RDF.type, RDFS.Datatype),
 (XSD.dateTimeStamp, RDF.type, RDFS.Datatype),
 (XSD.dateTime, RDF.type, RDFS.Datatype),
 (RDFS.Literal, RDF.type, RDFS.Datatype),
 (RDF.XMLLiteral, RDF.type, RDFS.Datatype),
]

RDFS_D_Axiomatic_Triples = (
 RDFS_D_Axiomatic_Triples_types + RDFS_D_Axiomatic_Triples_subclasses
)

OWL Class axiomatic triples: definition of special classes
_OWL_axiomatic_triples_Classes = [
 (OWL.AllDifferent, RDF.type, RDFS.Class),
 (OWL.AllDifferent, RDFS.subClassOf, RDFS.Resource),
 (OWL.AllDisjointClasses, RDF.type, RDFS.Class),
 (OWL.AllDisjointClasses, RDFS.subClassOf, RDFS.Resource),
 (OWL.AllDisjointProperties, RDF.type, RDFS.Class),
 (OWL.AllDisjointProperties, RDFS.subClassOf, RDFS.Resource),
 (OWL.Annotation, RDF.type, RDFS.Class),
 (OWL.Annotation, RDFS.subClassOf, RDFS.Resource),
 (OWL.AnnotationProperty, RDF.type, RDFS.Class),
 (OWL.AnnotationProperty, RDFS.subClassOf, RDF.Property),
 (OWL.AsymmetricProperty, RDF.type, RDFS.Class),
 (OWL.AsymmetricProperty, RDFS.subClassOf, RDF.Property),
 (OWL.Class, RDF.type, RDFS.Class),
 (OWL.Class, OWL.equivalentClass, RDFS.Class),
 # (OWL.DataRange, RDF.type, RDFS.Class),
 # (OWL.DataRange, OWL.equivalentClass, RDFS.Datatype),
 (RDFS.Datatype, RDF.type, RDFS.Class),
 (OWL.DatatypeProperty, RDF.type, RDFS.Class),
 (OWL.DatatypeProperty, RDFS.subClassOf, RDF.Property),
 (OWL.DeprecatedClass, RDF.type, RDFS.Class),
 (OWL.DeprecatedClass, RDFS.subClassOf, RDFS.Class),
 (OWL.DeprecatedProperty, RDF.type, RDFS.Class),
 (OWL.DeprecatedProperty, RDFS.subClassOf, RDF.Property),
 (OWL.FunctionalProperty, RDF.type, RDFS.Class),
 (OWL.FunctionalProperty, RDFS.subClassOf, RDF.Property),
 (OWL.InverseFunctionalProperty, RDF.type, RDFS.Class),
 (OWL.InverseFunctionalProperty, RDFS.subClassOf, RDF.Property),
 (OWL.IrreflexiveProperty, RDF.type, RDFS.Class),
 (OWL.IrreflexiveProperty, RDFS.subClassOf, RDF.Property),
 (RDFS.Literal, RDF.type, RDFS.Datatype),
 # (OWL.NamedIndividual, RDF.type, RDFS.Class),
 # (OWL.NamedIndividual, OWL.equivalentClass, RDFS.Resource),
 (OWL.NegativePropertyAssertion, RDF.type, RDFS.Class),
 (OWL.NegativePropertyAssertion, RDFS.subClassOf, RDFS.Resource),
 (OWL.Nothing, RDF.type, RDFS.Class),
 (OWL.Nothing, RDFS.subClassOf, OWL.Thing),
 (OWL.ObjectProperty, RDF.type, RDFS.Class),
 (OWL.ObjectProperty, OWL.equivalentClass, RDF.Property),
 (OWL.Ontology, RDF.type, RDFS.Class),
 (OWL.Ontology, RDFS.subClassOf, RDFS.Resource),
 (OWL.OntologyProperty, RDF.type, RDFS.Class),
 (OWL.OntologyProperty, RDFS.subClassOf, RDF.Property),
 (RDF.Property, RDF.type, RDFS.Class),
 (OWL.ReflexiveProperty, RDF.type, RDFS.Class),
 (OWL.ReflexiveProperty, RDFS.subClassOf, RDF.Property),
 (OWL.Restriction, RDF.type, RDFS.Class),
 (OWL.Restriction, RDFS.subClassOf, RDFS.Class),
 (OWL.SymmetricProperty, RDF.type, RDFS.Class),
 (OWL.SymmetricProperty, RDFS.subClassOf, RDF.Property),
 (OWL.Thing, RDF.type, RDFS.Class),
 (OWL.Thing, RDFS.subClassOf, RDFS.Resource),
 (OWL.TransitiveProperty, RDF.type, RDFS.Class),
 (OWL.TransitiveProperty, RDFS.subClassOf, RDF.Property),
 # OWL valid triples; some of these would be inferred by the OWL RL expansion, but it may make things
 # a bit faster to add these upfront
 (OWL.AllDisjointProperties, RDF.type, OWL.Class),
 (OWL.AllDisjointClasses, RDF.type, OWL.Class),
 (OWL.AllDisjointProperties, RDF.type, OWL.Class),
 (OWL.Annotation, RDF.type, OWL.Class),
 (OWL.AsymmetricProperty, RDF.type, OWL.Class),
 (OWL.Axiom, RDF.type, OWL.Class),
 (OWL.DataRange, RDF.type, OWL.Class),
 (RDFS.Datatype, RDF.type, OWL.Class),
 (OWL.DatatypeProperty, RDF.type, OWL.Class),
 (OWL.DeprecatedClass, RDF.type, OWL.Class),
 (OWL.DeprecatedClass, RDFS.subClassOf, OWL.Class),
 (OWL.DeprecatedProperty, RDF.type, OWL.Class),
 (OWL.FunctionalProperty, RDF.type, OWL.Class),
 (OWL.InverseFunctionalProperty, RDF.type, OWL.Class),
 (OWL.IrreflexiveProperty, RDF.type, OWL.Class),
 (OWL.NamedIndividual, RDF.type, OWL.Class),
 (OWL.NegativePropertyAssertion, RDF.type, OWL.Class),
 (OWL.Nothing, RDF.type, OWL.Class),
 (OWL.ObjectProperty, RDF.type, OWL.Class),
 (OWL.Ontology, RDF.type, OWL.Class),
 (OWL.OntologyProperty, RDF.type, OWL.Class),
 (RDF.Property, RDF.type, OWL.Class),
 (OWL.ReflexiveProperty, RDF.type, OWL.Class),
 (OWL.Restriction, RDF.type, OWL.Class),
 (OWL.Restriction, RDFS.subClassOf, OWL.Class),
 # (OWL.SelfRestriction, RDF.type, OWL.Class),
 (OWL.SymmetricProperty, RDF.type, OWL.Class),
 (OWL.Thing, RDF.type, OWL.Class),
 (OWL.TransitiveProperty, RDF.type, OWL.Class),
]

OWL Property axiomatic triples: definition of domains and ranges
_OWL_axiomatic_triples_Properties = [
 (OWL.allValuesFrom, RDF.type, RDF.Property),
 (OWL.allValuesFrom, RDFS.domain, OWL.Restriction),
 (OWL.allValuesFrom, RDFS.range, RDFS.Class),
 (OWL.assertionProperty, RDF.type, RDF.Property),
 (OWL.assertionProperty, RDFS.domain, OWL.NegativePropertyAssertion),
 (OWL.assertionProperty, RDFS.range, RDF.Property),
 (OWL.backwardCompatibleWith, RDF.type, OWL.OntologyProperty),
 (OWL.backwardCompatibleWith, RDF.type, OWL.AnnotationProperty),
 (OWL.backwardCompatibleWith, RDFS.domain, OWL.Ontology),
 (OWL.backwardCompatibleWith, RDFS.range, OWL.Ontology),
 # (OWL.bottomDataProperty, RDF.type, RDFS.DatatypeProperty),
 # (OWL.bottomObjectProperty, RDF.type, OWL.ObjectProperty),
 # (OWL.cardinality, RDF.type, RDF.Property),
 # (OWL.cardinality, RDFS.domain, OWL.Restriction),
 # (OWL.cardinality, RDFS.range, XSD.nonNegativeInteger),
 (RDFS.comment, RDF.type, OWL.AnnotationProperty),
 (RDFS.comment, RDFS.domain, RDFS.Resource),
 (RDFS.comment, RDFS.range, RDFS.Literal),
 (OWL.complementOf, RDF.type, RDF.Property),
 (OWL.complementOf, RDFS.domain, RDFS.Class),
 (OWL.complementOf, RDFS.range, RDFS.Class),
 # (OWL.datatypeComplementOf, RDF.type, RDF.Property),
 # (OWL.datatypeComplementOf, RDFS.domain, RDFS.Datatype),
 # (OWL.datatypeComplementOf, RDFS.range, RDFS.Datatype),
 (OWL.deprecated, RDF.type, OWL.AnnotationProperty),
 (OWL.deprecated, RDFS.domain, RDFS.Resource),
 (OWL.deprecated, RDFS.range, RDFS.Resource),
 (OWL.differentFrom, RDF.type, RDF.Property),
 (OWL.differentFrom, RDFS.domain, RDFS.Resource),
 (OWL.differentFrom, RDFS.range, RDFS.Resource),
 # (OWL.disjointUnionOf, RDF.type, RDF.Property),
 # (OWL.disjointUnionOf, RDFS.domain, RDFS.Class),
 # (OWL.disjointUnionOf, RDFS.range, RDF.List),
 (OWL.disjointWith, RDF.type, RDF.Property),
 (OWL.disjointWith, RDFS.domain, RDFS.Class),
 (OWL.disjointWith, RDFS.range, RDFS.Class),
 (OWL.distinctMembers, RDF.type, RDF.Property),
 (OWL.distinctMembers, RDFS.domain, OWL.AllDifferent),
 (OWL.distinctMembers, RDFS.range, RDF.List),
 (OWL.equivalentClass, RDF.type, RDF.Property),
 (OWL.equivalentClass, RDFS.domain, RDFS.Class),
 (OWL.equivalentClass, RDFS.range, RDFS.Class),
 (OWL.equivalentProperty, RDF.type, RDF.Property),
 (OWL.equivalentProperty, RDFS.domain, RDF.Property),
 (OWL.equivalentProperty, RDFS.range, RDF.Property),
 (OWL.hasKey, RDF.type, RDF.Property),
 (OWL.hasKey, RDFS.domain, RDFS.Class),
 (OWL.hasKey, RDFS.range, RDF.List),
 (OWL.hasValue, RDF.type, RDF.Property),
 (OWL.hasValue, RDFS.domain, OWL.Restriction),
 (OWL.hasValue, RDFS.range, RDFS.Resource),
 (OWL.imports, RDF.type, OWL.OntologyProperty),
 (OWL.imports, RDFS.domain, OWL.Ontology),
 (OWL.imports, RDFS.range, OWL.Ontology),
 (OWL.incompatibleWith, RDF.type, OWL.OntologyProperty),
 (OWL.incompatibleWith, RDF.type, OWL.AnnotationProperty),
 (OWL.incompatibleWith, RDFS.domain, OWL.Ontology),
 (OWL.incompatibleWith, RDFS.range, OWL.Ontology),
 (OWL.intersectionOf, RDF.type, RDF.Property),
 (OWL.intersectionOf, RDFS.domain, RDFS.Class),
 (OWL.intersectionOf, RDFS.range, RDF.List),
 (OWL.inverseOf, RDF.type, RDF.Property),
 (OWL.inverseOf, RDFS.domain, RDF.Property),
 (OWL.inverseOf, RDFS.range, RDF.Property),
 (RDFS.isDefinedBy, RDF.type, OWL.AnnotationProperty),
 (RDFS.isDefinedBy, RDFS.domain, RDFS.Resource),
 (RDFS.isDefinedBy, RDFS.range, RDFS.Resource),
 (RDFS.label, RDF.type, OWL.AnnotationProperty),
 (RDFS.label, RDFS.domain, RDFS.Resource),
 (RDFS.label, RDFS.range, RDFS.Literal),
 (OWL.maxCardinality, RDF.type, RDF.Property),
 (OWL.maxCardinality, RDFS.domain, OWL.Restriction),
 (OWL.maxCardinality, RDFS.range, XSD.nonNegativeInteger),
 (OWL.maxQualifiedCardinality, RDF.type, RDF.Property),
 (OWL.maxQualifiedCardinality, RDFS.domain, OWL.Restriction),
 (OWL.maxQualifiedCardinality, RDFS.range, XSD.nonNegativeInteger),
 (OWL.members, RDF.type, RDF.Property),
 (OWL.members, RDFS.domain, RDFS.Resource),
 (OWL.members, RDFS.range, RDF.List),
 # (OWL.minCardinality, RDF.type, RDF.Property),
 # (OWL.minCardinality, RDFS.domain, OWL.Restriction),
 # (OWL.minCardinality, RDFS.range, XSD.nonNegativeInteger),
 # (OWL.minQualifiedCardinality, RDF.type, RDF.Property),
 # (OWL.minQualifiedCardinality, RDFS.domain, OWL.Restriction),
 # (OWL.minQualifiedCardinality, RDFS.range, XSD.nonNegativeInteger),
 # (OWL.annotatedTarget, RDF.type, RDF.Property),
 # (OWL.annotatedTarget, RDFS.domain, RDFS.Resource),
 # (OWL.annotatedTarget, RDFS.range, RDFS.Resource),
 (OWL.onClass, RDF.type, RDF.Property),
 (OWL.onClass, RDFS.domain, OWL.Restriction),
 (OWL.onClass, RDFS.range, RDFS.Class),
 # (OWL.onDataRange, RDF.type, RDF.Property),
 # (OWL.onDataRange, RDFS.domain, OWL.Restriction),
 # (OWL.onDataRange, RDFS.range, RDFS.Datatype),
 (OWL.onDatatype, RDF.type, RDF.Property),
 (OWL.onDatatype, RDFS.domain, RDFS.Datatype),
 (OWL.onDatatype, RDFS.range, RDFS.Datatype),
 (OWL.oneOf, RDF.type, RDF.Property),
 (OWL.oneOf, RDFS.domain, RDFS.Class),
 (OWL.oneOf, RDFS.range, RDF.List),
 (OWL.onProperty, RDF.type, RDF.Property),
 (OWL.onProperty, RDFS.domain, OWL.Restriction),
 (OWL.onProperty, RDFS.range, RDF.Property),
 # (OWL.onProperties, RDF.type, RDF.Property),
 # (OWL.onProperties, RDFS.domain, OWL.Restriction),
 # (OWL.onProperties, RDFS.range, RDF.List),
 # (OWL.annotatedProperty, RDF.type, RDF.Property),
 # (OWL.annotatedProperty, RDFS.domain, RDFS.Resource),
 # (OWL.annotatedProperty, RDFS.range, RDF.Property),
 (OWL.priorVersion, RDF.type, OWL.OntologyProperty),
 (OWL.priorVersion, RDF.type, OWL.AnnotationProperty),
 (OWL.priorVersion, RDFS.domain, OWL.Ontology),
 (OWL.priorVersion, RDFS.range, OWL.Ontology),
 (OWL.propertyChainAxiom, RDF.type, RDF.Property),
 (OWL.propertyChainAxiom, RDFS.domain, RDF.Property),
 (OWL.propertyChainAxiom, RDFS.range, RDF.List),
 # (OWL.propertyDisjointWith, RDF.type, RDF.Property),
 # (OWL.propertyDisjointWith, RDFS.domain, RDF.Property),
 # (OWL.propertyDisjointWith, RDFS.range, RDF.Property),
 #
 # (OWL.qualifiedCardinality, RDF.type, RDF.Property),
 # (OWL.qualifiedCardinality, RDFS.domain, OWL.Restriction),
 # (OWL.qualifiedCardinality, RDFS.range, XSD.nonNegativeInteger),
 (OWL.sameAs, RDF.type, RDF.Property),
 (OWL.sameAs, RDFS.domain, RDFS.Resource),
 (OWL.sameAs, RDFS.range, RDFS.Resource),
 (RDFS.seeAlso, RDF.type, OWL.AnnotationProperty),
 (RDFS.seeAlso, RDFS.domain, RDFS.Resource),
 (RDFS.seeAlso, RDFS.range, RDFS.Resource),
 (OWL.someValuesFrom, RDF.type, RDF.Property),
 (OWL.someValuesFrom, RDFS.domain, OWL.Restriction),
 (OWL.someValuesFrom, RDFS.range, RDFS.Class),
 (OWL.sourceIndividual, RDF.type, RDF.Property),
 (OWL.sourceIndividual, RDFS.domain, OWL.NegativePropertyAssertion),
 (OWL.sourceIndividual, RDFS.range, RDFS.Resource),
 #
 # (OWL.annotatedSource, RDF.type, RDF.Property),
 # (OWL.annotatedSource, RDFS.domain, RDFS.Resource),
 # (OWL.annotatedSource, RDFS.range, RDFS.Resource),
 #
 (OWL.targetIndividual, RDF.type, RDF.Property),
 (OWL.targetIndividual, RDFS.domain, OWL.NegativePropertyAssertion),
 (OWL.targetIndividual, RDFS.range, RDFS.Resource),
 (OWL.targetValue, RDF.type, RDF.Property),
 (OWL.targetValue, RDFS.domain, OWL.NegativePropertyAssertion),
 (OWL.targetValue, RDFS.range, RDFS.Literal),
 # (OWL.topDataProperty, RDF.type, RDFS.DatatypeProperty),
 # (OWL.topDataProperty, RDFS.domain, RDFS.Resource),
 # (OWL.topDataProperty, RDFS.range, RDFS.Literal),
 #
 # (OWL.topObjectProperty, RDF.type, OWL.ObjectProperty),
 # (OWL.topObjectProperty, RDFS.domain, RDFS.Resource),
 # (OWL.topObjectProperty, RDFS.range, RDFS.Resource),
 (OWL.unionOf, RDF.type, RDF.Property),
 (OWL.unionOf, RDFS.domain, RDFS.Class),
 (OWL.unionOf, RDFS.range, RDF.List),
 (OWL.versionInfo, RDF.type, OWL.AnnotationProperty),
 (OWL.versionInfo, RDFS.domain, RDFS.Resource),
 (OWL.versionInfo, RDFS.range, RDFS.Resource),
 (OWL.versionIRI, RDF.type, OWL.AnnotationProperty),
 (OWL.versionIRI, RDFS.domain, RDFS.Resource),
 (OWL.versionIRI, RDFS.range, RDFS.Resource),
 (OWL.withRestrictions, RDF.type, RDF.Property),
 (OWL.withRestrictions, RDFS.domain, RDFS.Datatype),
 (OWL.withRestrictions, RDFS.range, RDF.List),
 # some OWL valid triples; these would be inferred by the OWL RL expansion, but it may make things
 # a bit faster to add these upfront
 (OWL.allValuesFrom, RDFS.range, OWL.Class),
 (OWL.complementOf, RDFS.domain, OWL.Class),
 (OWL.complementOf, RDFS.range, OWL.Class),
 # (OWL.datatypeComplementOf, domain, OWL.DataRange),
 # (OWL.datatypeComplementOf, range, OWL.DataRange),
 (OWL.disjointUnionOf, RDFS.domain, OWL.Class),
 (OWL.disjointWith, RDFS.domain, OWL.Class),
 (OWL.disjointWith, RDFS.range, OWL.Class),
 (OWL.equivalentClass, RDFS.domain, OWL.Class),
 (OWL.equivalentClass, RDFS.range, OWL.Class),
 (OWL.hasKey, RDFS.domain, OWL.Class),
 (OWL.intersectionOf, RDFS.domain, OWL.Class),
 (OWL.onClass, RDFS.range, OWL.Class),
 # (OWL.onDataRange, RDFS.range, OWL.DataRange),
 (OWL.onDatatype, RDFS.domain, OWL.DataRange),
 (OWL.onDatatype, RDFS.range, OWL.DataRange),
 (OWL.oneOf, RDFS.domain, OWL.Class),
 (OWL.someValuesFrom, RDFS.range, OWL.Class),
 (OWL.unionOf, RDFS.range, OWL.Class),
 # (OWL.withRestrictions, RDFS.domain, OWL.DataRange)
]

OWL RL axiomatic triples: combination of the RDFS triples plus the OWL specific ones
OWLRL_Axiomatic_Triples = (
 _OWL_axiomatic_triples_Classes + _OWL_axiomatic_triples_Properties
)

Note that this is not used anywhere. But I encoded it once and I did not want to remove it...:-)
_OWL_axiomatic_triples_Facets = [
 # langPattern
 (XSD.length, RDF.type, RDF.Property),
 (XSD.maxExclusive, RDF.type, RDF.Property),
 (XSD.maxInclusive, RDF.type, RDF.Property),
 (XSD.maxLength, RDF.type, RDF.Property),
 (XSD.minExclusive, RDF.type, RDF.Property),
 (XSD.minInclusive, RDF.type, RDF.Property),
 (XSD.minLength, RDF.type, RDF.Property),
 (XSD.pattern, RDF.type, RDF.Property),
 (XSD.length, RDFS.domain, RDFS.Resource),
 (XSD.maxExclusive, RDFS.domain, RDFS.Resource),
 (XSD.maxInclusive, RDFS.domain, RDFS.Resource),
 (XSD.maxLength, RDFS.domain, RDFS.Resource),
 (XSD.minExclusive, RDFS.domain, RDFS.Resource),
 (XSD.minInclusive, RDFS.domain, RDFS.Resource),
 (XSD.minLength, RDFS.domain, RDFS.Resource),
 (XSD.pattern, RDFS.domain, RDFS.Resource),
 (XSD.length, RDFS.domain, RDFS.Resource),
 (XSD.maxExclusive, RDFS.range, RDFS.Literal),
 (XSD.maxInclusive, RDFS.range, RDFS.Literal),
 (XSD.maxLength, RDFS.range, RDFS.Literal),
 (XSD.minExclusive, RDFS.range, RDFS.Literal),
 (XSD.minInclusive, RDFS.range, RDFS.Literal),
 (XSD.minLength, RDFS.range, RDFS.Literal),
 (XSD.pattern, RDFS.range, RDFS.Literal),
]

OWL D-entailment triples (additionally to the RDFS ones), ie, possible subclassing of various extra datatypes
_OWL_D_Axiomatic_Triples_types = [(RDF.PlainLiteral, RDF.type, RDFS.Datatype)]

#
OWL_D_Axiomatic_Triples_subclasses = [
 (XSD.string, RDFS.subClassOf, RDF.PlainLiteral),
 (XSD.normalizedString, RDFS.subClassOf, RDF.PlainLiteral),
 (XSD.token, RDFS.subClassOf, RDF.PlainLiteral),
 (XSD.Name, RDFS.subClassOf, RDF.PlainLiteral),
 (XSD.NCName, RDFS.subClassOf, RDF.PlainLiteral),
 (XSD.NMTOKEN, RDFS.subClassOf, RDF.PlainLiteral),
]

#
OWLRL_Datatypes_Disjointness = [
 (XSD.anyURI, OWL.disjointWith, XSD.base64Binary),
 (XSD.anyURI, OWL.disjointWith, XSD.boolean),
 (XSD.anyURI, OWL.disjointWith, XSD.dateTime),
 (XSD.anyURI, OWL.disjointWith, XSD.decimal),
 (XSD.anyURI, OWL.disjointWith, XSD.double),
 (XSD.anyURI, OWL.disjointWith, XSD.float),
 (XSD.anyURI, OWL.disjointWith, XSD.hexBinary),
 (XSD.anyURI, OWL.disjointWith, XSD.string),
 (XSD.anyURI, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.anyURI, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.base64Binary, OWL.disjointWith, XSD.boolean),
 (XSD.base64Binary, OWL.disjointWith, XSD.dateTime),
 (XSD.base64Binary, OWL.disjointWith, XSD.decimal),
 (XSD.base64Binary, OWL.disjointWith, XSD.double),
 (XSD.base64Binary, OWL.disjointWith, XSD.float),
 (XSD.base64Binary, OWL.disjointWith, XSD.hexBinary),
 (XSD.base64Binary, OWL.disjointWith, XSD.string),
 (XSD.base64Binary, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.base64Binary, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.boolean, OWL.disjointWith, XSD.dateTime),
 (XSD.boolean, OWL.disjointWith, XSD.decimal),
 (XSD.boolean, OWL.disjointWith, XSD.double),
 (XSD.boolean, OWL.disjointWith, XSD.float),
 (XSD.boolean, OWL.disjointWith, XSD.hexBinary),
 (XSD.boolean, OWL.disjointWith, XSD.string),
 (XSD.boolean, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.boolean, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.dateTime, OWL.disjointWith, XSD.decimal),
 (XSD.dateTime, OWL.disjointWith, XSD.double),
 (XSD.dateTime, OWL.disjointWith, XSD.float),
 (XSD.dateTime, OWL.disjointWith, XSD.hexBinary),
 (XSD.dateTime, OWL.disjointWith, XSD.string),
 (XSD.dateTime, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.dateTime, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.decimal, OWL.disjointWith, XSD.double),
 (XSD.decimal, OWL.disjointWith, XSD.float),
 (XSD.decimal, OWL.disjointWith, XSD.hexBinary),
 (XSD.decimal, OWL.disjointWith, XSD.string),
 (XSD.decimal, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.decimal, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.double, OWL.disjointWith, XSD.float),
 (XSD.double, OWL.disjointWith, XSD.hexBinary),
 (XSD.double, OWL.disjointWith, XSD.string),
 (XSD.double, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.double, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.float, OWL.disjointWith, XSD.hexBinary),
 (XSD.float, OWL.disjointWith, XSD.string),
 (XSD.float, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.float, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.hexBinary, OWL.disjointWith, XSD.string),
 (XSD.hexBinary, OWL.disjointWith, RDF.PlainLiteral),
 (XSD.hexBinary, OWL.disjointWith, RDF.XMLLiteral),
 (XSD.string, OWL.disjointWith, RDF.XMLLiteral),
]

OWL RL D Axiomatic triples: combination of the RDFS ones, plus some extra statements on ranges and domains, plus
some OWL specific datatypes
OWLRL_D_Axiomatic_Triples = (
 RDFS_D_Axiomatic_Triples
 + _OWL_D_Axiomatic_Triples_types
 + OWL_D_Axiomatic_Triples_subclasses
 + OWLRL_Datatypes_Disjointness
)

DatatypeHandling.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713

	# -*- coding: utf-8 -*-
#
"""
Most of the XSD datatypes are handled directly by RDFLib. However, in some cases, that is not good enough. There are two
major reasons for this:

#. Some datatypes are missing from RDFLib and required by OWL 2 RL and/or RDFS.
#. In other cases, though the datatype is present, RDFLib is fairly lax in checking the lexical value of those datatypes. Typical case is boolean.

Some of these deficiencies are handled by this module. All the functions convert the lexical value into a
python datatype (or return the original string if this is not possible) which will be used, e.g.,
for comparisons (equalities). If the lexical value constraints are not met, exceptions are raised.

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/
"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

noinspection PyPep8Naming
from owlrl.RDFS import RDFNS as ns_rdf
from rdflib.namespace import RDF, XSD

from rdflib.term import XSDToPython, Literal, _toPythonMapping

import datetime, time, re
from decimal import Decimal

noinspection PyMissingConstructor,PyPep8Naming
class _namelessTZ(datetime.tzinfo):
 """
 (Nameless) timezone object. The python datetime object requires timezones as
 a specific object added to the conversion, rather than the explicit hour and minute
 difference used by XSD. This class is used to wrap around the hour/minute values.

 :param hours: Hour offset.
 :param minutes: Minute offset
 """

 def __init__(self, hours, minutes):
 """
 @param hours: hour offset
 @param minutes: minute offset
 """
 self.__offset = datetime.timedelta(hours=hours, minutes=minutes)
 self.__name = "nameless"

 def utcoffset(self, dt):
 return self.__offset

 def tzname(self, dt):
 return self.__name

 def dst(self, dt):
 return datetime.timedelta(0)

noinspection PyPep8Naming
def _returnTimeZone(incoming_v):
 """Almost all time/date related methods require the extraction of optional time zone information.
 @param incoming_v: the time/date string
 @return (v,timezone) tuple; 'v' is the input string with the timezone info cut off, 'timezone' is a L{_namelessTZ}
 instance or None
 """
 if incoming_v[-1] == "Z":
 v = incoming_v[:-1]
 tzone = _namelessTZ(0, 0)
 else:
 pattern = r".*(\+|-)([0-9][0-9]):([0-9][0-9])"
 match = re.match(pattern, incoming_v)
 if match is None:
 v = incoming_v
 tzone = None
 else:
 hours = int(match.groups()[1])
 if match.groups()[0] == "-":
 hours = -hours - 1
 minutes = int(match.groups()[2])
 v = incoming_v[:-6]
 tzone = _namelessTZ(hours, minutes)
 return v, tzone

Booleans
noinspection PyPep8Naming
def _strToBool(v):
 """The built-in conversion to boolean is way too lax. The xsd specification requires that only true, false, 1 or 0 should be used...
 @param v: the literal string defined as boolean
 @return corresponding boolean value
 @raise ValueError: invalid boolean values
 """
 if v.lower() == "true" or v.lower() == "1":
 return True
 elif v.lower() == "false" or v.lower() == "0":
 return False
 else:
 raise ValueError("Invalid boolean literal value %s" % v)

Decimals
noinspection PyPep8Naming
def _strToDecimal(v):
 """The built in datatype handling for RDFLib maps a decimal number to float, but the python version 2.4 and upwards
 also has a Decimal number. Better make use of that to use very high numbers.
 However, there is also a big difference between Python's decimal and XSD's decimal, because the latter does not
 allow for an exponential normal form (why???). This must be filtered out.
 @param v: the literal string defined as decimal
 @return Decimal
 @raise ValueError: invalid decimal value
 """
 # check whether the lexical form of 'v' is o.k.
 if v.find("E") != -1 or v.find("e") != -1:
 # this is an invalid lexical form, though would be accepted by Python
 raise ValueError("Invalid decimal literal value %s" % v)
 else:
 return Decimal(v)

ANY URIS
set of characters allowed in a hexadecimal number
_hexc = ["A", "B", "C", "D", "E", "F", "a", "b", "c", "d", "e", "f"]
set of numerals
_numb = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "0"]
noinspection PyPep8Naming
def _strToAnyURI(v):
 """Rudimentary test for the AnyURI value. If it is a relative URI, then some tests are done to filter out
 mistakes. I am not sure this is the full implementation of the RFC, though, may have to be checked at some point
 later.
 @param v: the literal string defined as a URI
 @return the incoming value
 @raise ValueError: invalid URI value
 """
 import urllib.parse

 if len(v) == 0:
 return v
 if urllib.parse.urlsplit(v)[0] != "":
 # this means that there is a proper scheme, the URI should be kosher
 return v
 else:
 # this is meant to be a relative URI.
 # If I am correct, that cannot begin with one or more "?" or ":" characters
 # all others are o.k.
 # if it begins with a % then it should be followed by two hexa characters,
 # otherwise it is also a bug
 if v[0] == "%":
 if (
 len(v) >= 3
 and (v[1] in _hexc or v[1] in _numb)
 and (v[2] in _hexc or v[2] in _numb)
):
 return v
 else:
 raise ValueError("Invalid IRI %s" % v)
 elif v[0] == "?" or v[0] == ":":
 raise ValueError("Invalid IRI %s" % v)
 else:
 return v

Base64Binary
noinspection PyPep8Naming
def _strToBase64Binary(v):
 """Rudimentary test for the base64Binary value. The problem is that the built-in b64 module functions ignore the
 fact that only a certain family of characters are allowed to appear in the lexical value, so this is checked first.
 @param v: the literal string defined as a base64encoded string
 @return the decoded (binary) content
 @raise ValueError: invalid base 64 binary value
 """
 import base64

 if v.replace("=", "x").replace("+", "y").replace("/", "z").isalnum():
 try:
 return base64.standard_b64decode(v)
 except:
 raise ValueError("Invalid Base64Binary %s" % v)
 else:
 raise ValueError("Invalid Base64Binary %s" % v)

Numerical types
limits for unsigned bytes
_limits_unsignedByte = [-1, 256]

limits for bytes
_limits_byte = [-129, 128]

limits for unsigned int
_limits_unsignedInt = [-1, 4294967296]

limits for int
_limits_int = [-2147483649, 2147483648]

limits for unsigned short
_limits_unsignedShort = [-1, 65536]

limits for short
_limits_short = [-32769, 32768]

limits for unsigned long
_limits_unsignedLong = [-1, 18446744073709551616]

limits for long
_limits_long = [-9223372036854775809, 9223372036854775808]

limits for positive integer
_limits_positiveInteger = [0, None]

limits for non positive integer
_limits_nonPositiveInteger = [None, 1]

limits for non negative integer
_limits_nonNegativeInteger = [-1, None]

limits for negative integer
_limits_negativeInteger = [None, 0]

noinspection PyPep8Naming,PyBroadException
def _strToBoundNumeral(v, interval, conversion):
 """Test (and convert) a generic numerical type, with a check against a lower and upper limit.
 @param v: the literal string to be converted
 @param interval: lower and upper bounds (non inclusive). If the value is None, no comparison should be done
 @param conversion: conversion function, ie, int, long, etc
 @raise ValueError: invalid value
 """
 try:
 i = conversion(v)
 if (interval[0] is None or interval[0] < i) and (
 interval[1] is None or i < interval[1]
):
 return i
 except:
 pass
 raise ValueError("Invalid numerical value %s" % v)

Double and float
noinspection PyPep8Naming
def _strToDouble(v):
 """Test and convert a double value into a Decimal or float. Raises an exception if the number is outside the
 permitted range, ie, 1.0E+310 and 1.0E-330. To be on the safe side (python does not have double!) Decimals are used
 if possible. Upper and lower values, as required by xsd, are checked (and these fixed values are the reasons
 why Decimal is used!)

 @param v: the literal string defined as a double
 @return Decimal
 @raise ValueError: invalid value
 """
 try:
 value = Decimal(v)
 upper = Decimal("1.0E+310")
 lower = Decimal("1.0E-330")
 if lower < abs(value) < upper:
 # bingo
 return value
 else:
 raise ValueError("Invalid double %s" % v)
 except:
 # there was a problem in creating a decimal...
 raise ValueError("Invalid double %s" % v)

noinspection PyPep8Naming
def _strToFloat(v):
 """Test and convert a float value into Decimal or (python) float. Raises an exception if the number is outside the
 permitted range, ie, 1.0E+40 and 1.0E-50. (And these fixed values are the reasons why Decimal is used!)

 @param v: the literal string defined as a float
 @return Decimal if the local python version is >= 2.4, float otherwise
 @raise ValueError: invalid value
 """
 try:
 value = Decimal(v)
 upper = Decimal("1.0E+40")
 lower = Decimal("1.0E-50")
 if lower < abs(value) < upper:
 # bingo
 return value
 else:
 raise ValueError("Invalid float %s" % v)
 except:
 # there was a problem in creating a decimal...
 raise ValueError("Invalid float %s" % v)

hexa
noinspection PyPep8Naming
def _strToHexBinary(v):
 """Test (and convert) hexa integer values. The number of characters should be even.
 @param v: the literal string defined as a hexa number
 @return long value
 @raise ValueError: invalid value
 """
 # first of all, the number of characters must be even according to the xsd spec:
 length = len(v)
 if (length / 2) * 2 != length:
 raise ValueError("Invalid hex binary number %s" % v)
 return int(v, 16)

Datetime, date timestamp, etc
noinspection PyPep8Naming
def _strToDateTimeAndStamp(incoming_v, timezone_required=False):
 """Test (and convert) datetime and date timestamp values.
 @param incoming_v: the literal string defined as the date and time
 @param timezone_required: whether the timezone is required (ie, for date timestamp) or not
 @return datetime
 @rtype: datetime.datetime
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (v, tzone) = _returnTimeZone(incoming_v)

 # Check on the timezone. For time date stamp object it is required
 if timezone_required and tzone is None:
 raise ValueError("Invalid datetime %s" % incoming_v)

 # The microseconds should be handled here...
 final_v = v
 milliseconds = 0
 milpattern = r"(.*)(\.)([0-9]*)"
 match = re.match(milpattern, v)
 if match is not None:
 # we have a millisecond portion...
 try:
 final_v = match.groups()[0]
 milliseconds = int(match.groups()[2])
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)
 #
 # By now, the pattern should be clear
 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%Y-%m-%dT%H:%M:%S")
 if tzone is not None:
 return datetime.datetime(
 tstr.tm_year,
 tstr.tm_mon,
 tstr.tm_mday,
 tstr.tm_hour,
 tstr.tm_min,
 tstr.tm_sec,
 milliseconds,
 tzone,
)
 else:
 return datetime.datetime(
 tstr.tm_year,
 tstr.tm_mon,
 tstr.tm_mday,
 tstr.tm_hour,
 tstr.tm_min,
 tstr.tm_sec,
 milliseconds,
)
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)

noinspection PyPep8Naming
def _strToTime(incoming_v):
 """Test (and convert) time values.
 @param incoming_v: the literal string defined as time value
 @return time
 @rtype datetime.time
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (v, tzone) = _returnTimeZone(incoming_v)

 # The microseconds should be handled here...
 final_v = v
 milliseconds = 0
 milpattern = r"(.*)(\.)([0-9]*)"
 match = re.match(milpattern, v)
 if match is not None:
 # we have a millisecond portion...
 try:
 final_v = match.groups()[0]
 milliseconds = int(match.groups()[2])
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)
 #
 # By now, the pattern should be clear
 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%H:%M:%S")
 if tzone is not None:
 return datetime.time(
 tstr.tm_hour, tstr.tm_min, tstr.tm_sec, milliseconds, tzone
)
 else:
 return datetime.time(tstr.tm_hour, tstr.tm_min, tstr.tm_sec, milliseconds)
 except:
 raise ValueError("Invalid time %s" % incoming_v)

noinspection PyPep8Naming
def _strToDate(incoming_v):
 """Test (and convert) date values.
 @param incoming_v: the literal string defined as date (in iso format)
 @return date
 @return datetime.date
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (final_v, tzone) = _returnTimeZone(incoming_v)

 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%Y-%m-%d")
 return datetime.date(tstr.tm_year, tstr.tm_mon, tstr.tm_mday)
 except:
 raise ValueError("Invalid date %s" % incoming_v)

The 'g' series for dates
The 'g' datatypes (eg, gYear) cannot be directly represented as a python datatype
the series of methods below simply check whether the incoming string is o.k., but the
returned value is the same as the original
noinspection PyPep8Naming
def _strTogYearMonth(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime(v + "-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gYearMonth %s" % v)

noinspection PyPep8Naming
def _strTogYear(v):
 """Test gYear value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime(v + "-01-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gYear %s" % v)

noinspection PyPep8Naming
def _strTogMonthDay(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2008-" + v, "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gMonthDay %s" % v)

noinspection PyPep8Naming
def _strTogDay(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2001-01-" + v, "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gDay %s" % v)

noinspection PyPep8Naming
def _strTogMonth(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2001-" + v + "-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gMonth %s" % v)

XML Literal
noinspection PyPep8Naming
def _strToXMLLiteral(v):
 """Test (and convert) XML Literal values.
 @param v: the literal string defined as an xml literal
 @return the canonical version of the same xml text
 @raise ValueError: incorrect xml string
 """
 import xml.dom.minidom

 try:
 dom = xml.dom.minidom.parseString(v)
 return dom.toxml()
 except:
 raise ValueError("Invalid XML Literal %s" % v)

language, NMTOKEN, NAME, etc
regular expression for a 'language' datatype
_re_language = r"[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"

regexp for NMTOKEN. It must be used with a re.U flag (the '(?U' regexp form did not work. It may depend on the
locale...)
_re_NMTOKEN = r"[\w:_.\-]+"

characters not permitted at a starting position for Name (otherwise Name is like NMTOKEN
_re_Name_ex = [".", "-"] + _numb

regexp for NCName. It must be used with a re.U flag (the '(?U' regexp form did not work. It may depend on the
locale...)
_re_NCName = r"[\w_.\-]+"

characters not permitted at a starting position for NCName
_re_NCName_ex = [".", "-"] + _numb

noinspection PyDefaultArgument,PyPep8Naming,PyPep8Naming
def _strToVal_Regexp(v, regexp, flag=0, excludeStart=[]):
 """Test (and convert) a generic string type, with a check against a regular expression.
 @param v: the literal string to be converted
 @param regexp: the regular expression to check against
 @param flag: flags to be used in the regular expression
 @param excludeStart: array of characters disallowed in the first position
 @return original string
 @raise ValueError: invalid value
 """
 match = re.match(regexp, v, flag)
 if match is None or match.end() != len(v):
 raise ValueError("Invalid literal %s" % v)
 else:
 if len(excludeStart) > 0 and v[0] in excludeStart:
 raise ValueError("Invalid literal %s" % v)
 return v

Disallowed characters in a token or a normalized string, as a regexp
_re_token = "[^\n\t\r]+"

noinspection PyPep8Naming
def _strToToken(v):
 """Test (and convert) a string to a token.
 @param v: the literal string to be converted
 @return original string
 @raise ValueError: invalid value
 """
 if len(v) == 0:
 return v
 # filter out the case when there are new lines and similar (if there is a problem, an exception is raised)
 _strToVal_Regexp(v, _re_token)
 v1 = " ".join(v.strip().split())
 # normalize the string, and see if the result is the same:
 if len(v1) == len(v):
 # no characters lost, ie, no unnecessary spaces
 return v
 else:
 raise ValueError("Invalid literal %s" % v)

plain literal
noinspection PyPep8Naming
def _strToPlainLiteral(v):
 """Test (and convert) a plain literal
 @param v: the literal to be converted
 @return a new RDFLib Literal with language tag
 @raise ValueError: invalid value
 """
 reg = "(.*)@([^@]*)"
 # a plain literal must match this regexp!
 match = re.match(reg, v)
 if match is None:
 raise ValueError("Invalid plain literal %s" % v)
 else:
 lit = match.groups()[0]
 if len(match.groups()) == 1 or match.groups()[1] == "":
 # no language tag
 return Literal(lit)
 else:
 lang = match.groups()[1]
 # check if this is a correct language tag. Note that can raise an exception!
 try:
 lang = _strToVal_Regexp(lang, _re_language)
 return Literal(lit, lang=lang.lower())
 except:
 raise ValueError("Invalid plain literal %s" % v)

###
Replacement of RDFLib's conversion function. Each entry assigns a function to an XSD datatype, attempting to convert
a string to a Python datatype (or raise an exception if some problem is found)
AltXSDToPYTHON = {
 XSD.language: lambda v: _strToVal_Regexp(v, _re_language),
 XSD.NMTOKEN: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U),
 XSD.Name: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U, _re_Name_ex),
 XSD.NCName: lambda v: _strToVal_Regexp(v, _re_NCName, re.U, _re_NCName_ex),
 XSD.token: _strToToken,
 RDF.PlainLiteral: _strToPlainLiteral,
 XSD.boolean: _strToBool,
 XSD.decimal: _strToDecimal,
 XSD.anyURI: _strToAnyURI,
 XSD.base64Binary: _strToBase64Binary,
 XSD.double: _strToDouble,
 XSD.float: _strToFloat,
 XSD.byte: lambda v: _strToBoundNumeral(v, _limits_byte, int),
 XSD.int: lambda v: _strToBoundNumeral(v, _limits_int, int),
 XSD.long: lambda v: _strToBoundNumeral(v, _limits_long, int),
 XSD.positiveInteger: lambda v: _strToBoundNumeral(v, _limits_positiveInteger, int),
 XSD.nonPositiveInteger: lambda v: _strToBoundNumeral(
 v, _limits_nonPositiveInteger, int
),
 XSD.negativeInteger: lambda v: _strToBoundNumeral(v, _limits_negativeInteger, int),
 XSD.nonNegativeInteger: lambda v: _strToBoundNumeral(
 v, _limits_nonNegativeInteger, int
),
 XSD.short: lambda v: _strToBoundNumeral(v, _limits_short, int),
 XSD.unsignedByte: lambda v: _strToBoundNumeral(v, _limits_unsignedByte, int),
 XSD.unsignedShort: lambda v: _strToBoundNumeral(v, _limits_unsignedShort, int),
 XSD.unsignedInt: lambda v: _strToBoundNumeral(v, _limits_unsignedInt, int),
 XSD.unsignedLong: lambda v: _strToBoundNumeral(v, _limits_unsignedLong, int),
 XSD.hexBinary: _strToHexBinary,
 XSD.dateTime: lambda v: _strToDateTimeAndStamp(v, False),
 XSD.dateTimeStamp: lambda v: _strToDateTimeAndStamp(v, True),
 RDF.XMLLiteral: _strToXMLLiteral,
 XSD.integer: int,
 XSD.string: lambda v: v,
 RDF.HTML: lambda v: v,
 XSD.normalizedString: lambda v: _strToVal_Regexp(v, _re_token),
 # These are RDFS specific...
 XSD.time: _strToTime,
 XSD.date: _strToDate,
 XSD.gYearMonth: _strTogYearMonth,
 XSD.gYear: _strTogYear,
 XSD.gMonthDay: _strTogMonthDay,
 XSD.gDay: _strTogDay,
 XSD.gMonth: _strTogMonth,
}

def use_Alt_lexical_conversions():
 """
 Registering the datatypes item for RDFLib, ie, bind the dictionary values. The 'bind' method of RDFLib adds
 extra datatypes to the registered ones in RDFLib, though the table used here (I.e., :py:data:`.AltXSDToPYTHON`) actually
 overrides all of the default conversion routines. The method also add a Decimal entry to the :code:`PythonToXSD` list of
 RDFLib.
 """
 _toPythonMapping.update(AltXSDToPYTHON)

def use_RDFLib_lexical_conversions():
 """
 Restore the original (ie, RDFLib) set of lexical conversion routines.
 """
 _toPythonMapping.update(XSDToPython)

###
This module can pretty much tested individually...

if __name__ == "__main__":
 import sys

 dtype = sys.argv[1]
 string = sys.argv[2]
 datatype = XSD[dtype]
 result = AltXSDToPYTHON[datatype](string)
 print(type(result))
 print(result)

XsdDatatypes.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

	# -*- coding: utf-8 -*-
#
"""
Lists of XSD datatypes and their mutual relationships

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""
__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

from rdflib.namespace import RDF, RDFS, XSD

The basic XSD types used everywhere; this means not the complete set of day/month types
_Common_XSD_Datatypes = [
 XSD.integer,
 XSD.decimal,
 XSD.nonNegativeInteger,
 XSD.nonPositiveInteger,
 XSD.negativeInteger,
 XSD.positiveInteger,
 XSD.long,
 XSD.int,
 XSD.short,
 XSD.byte,
 XSD.unsignedLong,
 XSD.unsignedInt,
 XSD.unsignedShort,
 XSD.unsignedByte,
 XSD.float,
 XSD.double,
 XSD.string,
 XSD.normalizedString,
 XSD.token,
 XSD.language,
 XSD.Name,
 XSD.NCName,
 XSD.NMTOKEN,
 XSD.boolean,
 XSD.hexBinary,
 XSD.base64Binary,
 XSD.anyURI,
 XSD.dateTimeStamp,
 XSD.dateTime,
 XSD.time,
 XSD.date,
 RDFS.Literal,
 RDF.XMLLiteral,
 RDF.HTML,
 RDF.langString,
]

RDFS Datatypes: the basic ones plus the complete set of day/month ones
RDFS_Datatypes = _Common_XSD_Datatypes + [
 XSD.gYearMonth,
 XSD.gMonthDay,
 XSD.gYear,
 XSD.gDay,
 XSD.gMonth,
]

OWL RL Datatypes: the basic ones plus plain literal
OWL_RL_Datatypes = _Common_XSD_Datatypes + [RDF.PlainLiteral]

XSD Datatype subsumptions
_Common_Datatype_Subsumptions = {
 XSD.dateTimeStamp: [XSD.dateTime],
 XSD.integer: [XSD.decimal],
 XSD.long: [XSD.integer, XSD.decimal],
 XSD.int: [XSD.long, XSD.integer, XSD.decimal],
 XSD.short: [
 XSD.int,
 XSD.long,
 XSD.integer,
 XSD.decimal,
],
 XSD.byte: [
 XSD.short,
 XSD.int,
 XSD.long,
 XSD.integer,
 XSD.decimal,
],
 XSD.nonNegativeInteger: [XSD.integer, XSD.decimal],
 XSD.positiveInteger: [
 XSD.nonNegativeInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.unsignedLong: [
 XSD.nonNegativeInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.unsignedInt: [
 XSD.unsignedLong,
 XSD.nonNegativeInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.unsignedShort: [
 XSD.unsignedInt,
 XSD.unsignedLong,
 XSD.nonNegativeInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.unsignedByte: [
 XSD.unsignedShort,
 XSD.unsignedInt,
 XSD.unsignedLong,
 XSD.nonNegativeInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.nonPositiveInteger: [XSD.integer, XSD.decimal],
 XSD.negativeInteger: [
 XSD.nonPositiveInteger,
 XSD.integer,
 XSD.decimal,
],
 XSD.normalizedString: [XSD.string],
 XSD.token: [XSD.normalizedString, XSD.string],
 XSD.language: [XSD.token, XSD.normalizedString, XSD.string],
 XSD.Name: [XSD.token, XSD.normalizedString, XSD.string],
 XSD.NCName: [
 XSD.Name,
 XSD.token,
 XSD.normalizedString,
 XSD.string,
],
 XSD.NMTOKEN: [
 XSD.Name,
 XSD.token,
 XSD.normalizedString,
 XSD.string,
],
}

RDFS Datatype subsumptions: at the moment, there is no extra to XSD
RDFS_Datatype_Subsumptions = _Common_Datatype_Subsumptions

OWL Datatype subsumptions: at the moment, there is no extra to XSD
OWL_Datatype_Subsumptions = _Common_Datatype_Subsumptions

 All modules for which code is available

	owlrl

	owlrl.Closure

	owlrl.CombinedClosure

	owlrl.DatatypeHandling

	owlrl.OWLRL

	owlrl.OWLRLExtras

	owlrl.RDFSClosure

	owlrl.RestrictedDatatype

 Source code for owlrl

-*- coding: utf-8 -*-
#
"""
This module is a brute force implementation of the 'finite' version of `RDFS semantics`_ and of `OWL 2 RL`_ on the top
of RDFLib (with some caveats, see below). Some extensions to these are also implemented.

.. _RDFS semantics: http://www.w3.org/TR/rdf-mt/
.. _OWL 2 RL: http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

Brute force means that, in all cases, simple forward chaining rules are used to extend (recursively) the incoming graph
with all triples that the rule sets permit (ie, the "deductive closure" of the graph is computed).
There is an extra options whether the axiomatic triples are added to the graph (prior to the forward chaining step).
These, typically set the domain and range for properties or define some core classes.
In the case of RDFS, the implementation uses a 'finite' version of the axiomatic triples only (as proposed, for example,
by Herman ter Horst). This means that it adds only those :code:`rdf:_i` type predicates that do appear in the original graph,
thereby keeping this step finite. For OWL 2 RL, OWL 2 does not define axiomatic triples formally; but they can be
deduced from the `OWL 2 RDF Based Semantics`_ document and are listed in Appendix 6 (though informally).

.. _OWL 2 RDF Based Semantics: http://www.w3.org/TR/owl2-rdf-based-semantics/

.. note:: This implementation adds only those triples that refer to OWL terms that are meaningful for the OWL 2 RL case.

Package Entry Points
====================

The main entry point to the package is via the :class:`.DeductiveClosure` class. This class should be
initialized to control the parameters of the deductive closure; the forward chaining is done via the
L{expand<DeductiveClosure.expand>} method.
The simplest way to use the package from an RDFLib application is as follows::

 graph = Graph() # creation of an RDFLib graph
 ...
 ... # normal RDFLib application, eg, parsing RDF data
 ...
 DeductiveClosure(OWLRL_Semantics).expand(graph) # calculate an OWL 2 RL deductive closure of graph
 # without axiomatic triples

The first argument of the :class:`.DeductiveClosure` initialization can be replaced by other classes, providing different
types of deductive closure; other arguments are also possible. For example::

 DeductiveClosure(OWLRL_Extension, rdfs_closure = True, axiomatic_triples = True, datatype_axioms = True).expand(graph)

This will calculate the deductive closure including RDFS and some extensions to OWL 2 RL, and with all possible axiomatic
triples added to the graph (this is about the maximum the package can do…)

The same instance of :class:`.DeductiveClosure` can be used for several graph expansions. In other words, the
expand function does not change any state.

For convenience, a second entry point to the package is provided in the form of a function called
:func:`.convert_graph`, that expects a directory with various options, including a file name. The function
parses the file, creates the expanded graph, and serializes the result into RDF/XML or Turtle. This function is
particularly useful as an entry point for a CGI call (where the HTML form parameters are in a directory) and is easy to
use with a command line interface. The package distribution contains an example for both.

There are major closure type (ie, semantic closure possibilities); these can be controlled through the appropriate
parameters of the :class:`.DeductiveClosure` class:

 * using the :class:`.RDFS_Semantics` class, implementing the `RDFS semantics`_.

 .. _RDFS semantics: http://www.w3.org/TR/rdf-mt/

 * using the :class:`.OWLRL.OWLRL_Semantics` class, implementing the `OWL 2 RL`_.

 .. _OWL 2 RL: http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

 * using :class:`.CombinedClosure.RDFS_OWLRL_Semantics` class, implementing a combined semantics of `RDFS semantics`_ and `OWL 2 RL`_.

 .. _RDFS semantics: http://www.w3.org/TR/rdf-mt/
 .. _OWL 2 RL: http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

In all three cases there are other dimensions that can control the exact closure being generated:

 * for convenience, the so called axiomatic triples (see, eg, the `axiomatic triples in RDFS`_ are, by default, I{not} added to the graph closure to reduce the number of generated triples. These can be controlled through a separate initialization argument.

 .. _axiomatic triples in RDFS: http://www.w3.org/TR/rdf-mt/#rdfs_interp

 * similarly, the axiomatic triples for D-entailment are separated.

Some Technical/implementation aspects
=====================================

The core processing is done in the in the :class:`.Closure.Core` class, which is subclassed by the
:class:`.RDFSClosure.RDFS_Semantics` and the :class:`.OWLRL.OWLRL_Semantics` classes (these two are then, on their turn,
subclassed by the :class:`.CombinedClosure.RDFS_OWLRL_Semantics` class). The core implements the core functionality of
cycling through the rules, whereas the rules themselves are defined and implemented in the subclasses. There are also
methods that are executed only once either at the beginning or at the end of the full processing cycle. Adding axiomatic
triples is handled separately, which allows a finer user control over these features.

Literals must be handled separately. Indeed, the functionality relies on 'extended' RDF graphs, that allows literals
to be in a subject position, too. Because RDFLib does not allow that, processing begins by exchanging all literals in
the graph for bnodes (identical literals get the same associated bnode). Processing occurs on these bnodes; at the end
of the process all these bnodes are replaced by their corresponding literals if possible (if the bnode occurs in a
subject position, that triple is removed from the resulting graph). Details of this processing is handled in the
separate :class:`.Literals.LiteralProxies` class.

The OWL specification includes references to datatypes that are not in the core RDFS specification, consequently not
directly implemented by RDFLib. These are added in a separate module of the package.

Problems with Literals with datatypes

The current distribution of RDFLib is fairly poor in handling datatypes, particularly in checking whether a lexical form
of a literal is "proper" as for its declared datatype. A typical example is::
 "-1234"^^xsd:nonNegativeInteger
which should not be accepted as valid literal. Because the requirements of OWL 2 RL are much stricter in this respect,
an alternative set of datatype handling (essentially, conversions) had to be implemented (see the :py:mod:`.XsdDatatypes`
module).

The :class:`.DeductiveClosure` class has an additional instance variable whether
the default RDFLib conversion routines should be exchanged against the new ones. If this flag is set to True and
instance creation (this is the default), then the conversion routines are set back to the originals once the expansion
is complete, thereby avoiding to influence older application that may not work properly with the new set of conversion
routines.

If the user wants to use these alternative lexical conversions everywhere in the application, then
the :py:meth:`.DeductiveClosure.use_improved_datatypes_conversions` method can be invoked.
That method changes the conversion routines and, from that point on, all usage of :class:`.DeductiveClosure` instances
will use the improved conversion methods without resetting them. Ie, the code structure can be something like::

 DeductiveClosure().use_improved_datatypes_conversions()
 ... RDFLib application
 DeductiveClosure().expand(graph)
 ...

The default situation can be set back using the
:py:meth:`.DeductiveClosure.use_rdflib_datatypes_conversions` call.

It is, however, not *required* to use these methods at all. I.e., the user can use::

 DeductiveClosure(improved_datatypes=False).expand(graph)

which will result in a proper graph expansion except for the datatype specific comparisons which will be incomplete.

Requires:
 * `RDFLib`_, 4.0.0 and higher.

 .. _RDFLib: https://github.com/RDFLib/rdflib

 * `rdflib_jsonld`_

 .. _rdflib_jsonld: https://github.com/RDFLib/rdflib-jsonld

License: This software is available for use under the `W3C Software License`_

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

Examples: LangString is disjoint from String
__version__ = "6.0.2"
__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

noinspection PyPackageRequirements,PyPackageRequirements,PyPackageRequirements
import rdflib
from rdflib import Graph, Literal

from . import DatatypeHandling, Closure
from .OWLRLExtras import OWLRL_Extension, OWLRL_Extension_Trimming
from .OWLRL import OWLRL_Semantics
from .RDFSClosure import RDFS_Semantics
from .CombinedClosure import RDFS_OWLRL_Semantics
from rdflib.namespace import OWL

noinspection PyShadowingBuiltins
def __parse_input(iformat, inp, graph):
 """Parse the input into the graph, possibly checking the suffix for the format.

 @param iformat: input format; can be one of L{AUTO}, L{TURTLE}, or L{RDFXML}. L{AUTO} means that the suffix of the
 file name or URI will decide: '.ttl' means Turtle, RDF/XML otherwise.
 @param inp: input file; anything that RDFLib accepts in that position (URI, file name, file object). If '-',
 standard input is used.
 @param graph: the RDFLib Graph instance to parse into.
 """
 if iformat == "auto":
 if inp == "-":
 format = "turtle"
 else:
 if inp.endswith(".ttl") or inp.endswith(".n3"):
 format = "turtle"
 if inp.endswith(".json") or inp.endswith(".jsonld"):
 format = "json-ld"
 elif inp.endswith(".html"):
 format = "rdfa1.1"
 else:
 format = "xml"
 elif iformat == "turtle":
 format = "n3"
 elif iformat == "rdfa":
 format = "rdfa1.1"
 elif iformat == "rdfxml":
 format = "xml"
 elif iformat == "json":
 format = "json-ld"
 else:
 raise Exception("Unknown input syntax")

 if inp == "-":
 # standard input is used
 import sys

 source = sys.stdin
 else:
 source = inp
 graph.parse(source, format=format)

[docs]def interpret_owl_imports(iformat, graph):
 """
 Interpret the owl import statements. Essentially, recursively merge with all the objects in the owl import
 statement, and remove the corresponding triples from the graph.

 This method can be used by an application prior to expansion. It is *not* done by the the :class:`.DeductiveClosure`
 class.

 :param iformat: Input format; can be one of :code:`AUTO`, :code:`TURTLE`, or :code:`RDFXML`. :code:`AUTO` means that
 the suffix of the file name or URI will decide: '.ttl' means Turtle, RDF/XML otherwise.
 :type iformat: str

 :param graph: The RDFLib Graph instance to parse into.
 :type graph: :class:`RDFLib.Graph`
 """
 while True:
 # 1. collect the import statements:
 all_imports = [t for t in graph.triples((None, OWL.imports, None))]
 if len(all_imports) == 0:
 # no import statement whatsoever, we can go on...
 return
 # 2. remove all the import statements from the graph
 for t in all_imports:
 graph.remove(t)
 # 3. get all the imported vocabularies and import them
 for (s, p, uri) in all_imports:
 # this is not 100% kosher. The expected object for an import statement is a URI. However,
 # on local usage, a string would also make sense, so I do that one, too
 if isinstance(uri, Literal):
 __parse_input(iformat, str(uri), graph)
 else:
 __parse_input(iformat, uri, graph)

 # 4. start all over again to see if import statements have been imported

[docs]def return_closure_class(owl_closure, rdfs_closure, owl_extras, trimming=False):
 """
 Return the right semantic extension class based on three possible choices (this method is here to help potential
 users, the result can be fed into a :class:`DeductiveClosure` instance at initialization).

 :param owl_closure: Whether OWL 2 RL deductive closure should be calculated.
 :type owl_closure: bool

 :param rdfs_closure: Whether RDFS deductive closure should be calculated. In case :code:`owl_closure==True`, this
 parameter should also be used in the initialization of :class:`DeductiveClosure`.
 :type rdfs_closure: bool

 :param owl_extras: Whether the extra possibilities (rational datatype, etc) should be added to an OWL 2 RL
 deductive closure. This parameter has no effect in case :code:`owl_closure==False`.
 :type owl_extras: bool

 :param trimming: Whether extra trimming is done on the OWL RL + Extension output.
 :type trimming: bool

 :return: Deductive class reference or None.
 :rtype: :class:`.DeductiveClosure` or None
 """
 if owl_closure:
 if owl_extras:
 if trimming:
 return OWLRL_Extension_Trimming
 else:
 return OWLRL_Extension
 else:
 if rdfs_closure:
 return RDFS_OWLRL_Semantics
 else:
 return OWLRL_Semantics
 elif rdfs_closure:
 return RDFS_Semantics
 else:
 return None

noinspection PyCallingNonCallable
[docs]class DeductiveClosure:
 """
 Entry point to generate the deductive closure of a graph. The exact choice deductive
 closure is controlled by a class reference. The important initialization parameter is the :code:`closure_class`, a Class
 object referring to a subclass of :class:`.Closure.Core`. Although this package includes a number of such subclasses
 :class:`.OWLRL_Semantics`, :class:`.RDFS_Semantics`, :class:`.RDFS_OWLRL_Semantics`, and :class:`.OWLRL_Extension`, the user can use his/her
 own if additional rules are implemented.

 Note that :code:`owl:imports` statements are *not* interpreted in this class, that has to be done beforehand on the graph
 that is to be expanded.

 :param closure_class: A closure class reference.
 :type closure_class: subclass of :class:`.Closure.Core`

 :param improved_datatypes: Whether the improved set of lexical-to-Python conversions should be used for datatype handling. See the introduction for more details. Default: True.
 :type improved_datatypes: bool

 :param rdfs_closure: Whether the RDFS closure should also be executed. Default: False.
 :type rdfs_closure: bool

 :param axiomatic_triples: Whether relevant axiomatic triples are added before chaining, except for datatype axiomatic triples. Default: False.
 :type axiomatic_triples: bool

 :param datatype_axioms: Whether further datatype axiomatic triples are added to the output. Default: false.
 :type datatype_axioms: bool

 :var improved_datatype_generic: Whether the improved set of lexical-to-Python conversions should be used for datatype handling *in general*, I.e., not only for a particular instance and not only for inference purposes. Default: False.
 :type improved_Datatype_generic: bool
 """

 # This is the original set of param definitions in the class definition
 #
 # @ivar rdfs_closure: Whether the RDFS closure should also be executed. Default: False.
 # @type rdfs_closure: boolean
 # @ivar axiomatic_triples: Whether relevant axiomatic triples are added before chaining, except for datatype axiomatic
 # triples. Default: False.
 # @type axiomatic_triples: boolean
 # @ivar datatype_axioms: Whether further datatype axiomatic triples are added to the output. Default: false.
 # @type datatype_axioms: boolean
 # @ivar closure_class: the class instance used to expand the graph
 # @type closure_class: L{Closure.Core}
 # @cvar improved_datatype_generic: Whether the improved set of lexical-to-Python conversions should be used for
 # datatype handling I{in general}, ie, not only for a particular instance and not only for inference purposes.
 # Default: False.
 # @type improved_datatype_generic: boolean

 improved_datatype_generic = False

[docs] def __init__(
 self,
 closure_class,
 improved_datatypes=True,
 rdfs_closure=False,
 axiomatic_triples=False,
 datatype_axioms=False,
):
 # This is the original set of param definitions in the __init__
 #
 # @param closure_class: a closure class reference.
 # @type closure_class: subclass of L{Closure.Core}
 # @param rdfs_closure: whether RDFS rules are executed or not
 # @type rdfs_closure: boolean
 # @param axiomatic_triples: Whether relevant axiomatic triples are added before chaining, except for datatype
 # axiomatic triples. Default: False.
 # @type axiomatic_triples: boolean
 # @param datatype_axioms: Whether further datatype axiomatic triples are added to the output. Default: false.
 # @type datatype_axioms: boolean
 # @param improved_datatypes: Whether the improved set of lexical-to-Python conversions should be used for
 # datatype handling. See the introduction for more details. Default: True.
 # @type improved_datatypes: boolean

 if closure_class is None:
 self.closure_class = None
 else:
 if not isinstance(closure_class, type):
 raise ValueError("The closure type argument must be a class reference")
 else:
 self.closure_class = closure_class
 self.axiomatic_triples = axiomatic_triples
 self.datatype_axioms = datatype_axioms
 self.rdfs_closure = rdfs_closure
 self.improved_datatypes = improved_datatypes

[docs] def expand(self, graph):
 """
 Expand the graph using forward chaining, and with the relevant closure type.

 :param graph: The RDF graph.
 :type graph: :class:`rdflib.Graph`
 """
 if (not DeductiveClosure.improved_datatype_generic) and self.improved_datatypes:
 DatatypeHandling.use_Alt_lexical_conversions()

 if self.closure_class is not None:
 self.closure_class(
 graph, self.axiomatic_triples, self.datatype_axioms, self.rdfs_closure
).closure()

 if (not DeductiveClosure.improved_datatype_generic) and self.improved_datatypes:
 DatatypeHandling.use_RDFLib_lexical_conversions()

[docs] @staticmethod
 def use_improved_datatypes_conversions():
 """
 Switch the system to use the improved datatype conversion routines.
 """
 DeductiveClosure.improved_datatype_generic = True
 DatatypeHandling.use_Alt_lexical_conversions()

[docs] @staticmethod
 def use_rdflib_datatypes_conversions():
 """
 Switch the system to use the generic (RDFLib) datatype conversion routines
 """
 DeductiveClosure.improved_datatype_generic = False
 DatatypeHandling.use_RDFLib_lexical_conversions()

###

noinspection PyPep8Naming,PyBroadException,PyBroadException,PyBroadException
[docs]def convert_graph(options, closureClass=None):
 """
 Entry point for external scripts (CGI or command line) to parse an RDF file(s), possibly execute OWL and/or RDFS
 closures, and serialize back the result in some format.

 Note that this entry point can be used requiring no entailment at all;
 because both the input and the output format for the package can be RDF/XML or Turtle, such usage would
 simply mean a format conversion.

 If OWL 2 RL processing is required, that also means that the :code:`owl:imports` statements are interpreted. I.e.,
 ontologies can be spread over several files. Note, however, that the output of the process would then include all
 imported ontologies, too.

 :param options: Object with specific attributes.
 :type options: object

 :param options.sources: List of uris or file names for the source data; for each one if the name ends with 'ttl', it
 is considered to be turtle, RDF/XML otherwise (this can be overwritten by the options.iformat, though)
 :type options.sources: list

 :param options.text: Direct Turtle encoding of a graph as a text string (useful, eg, for a CGI call using a text
 field).
 :type options.text: str

 :param options.owlClosure: Can be yes or no.
 :type options.owlClosure: bool

 :param options.rdfsClosure: Can be yes or no.
 :type options.rdfsClosure: bool

 :param options.owlExtras: Can be yes or no; whether the extra rules beyond OWL 2 RL are used or not.
 :type options.owlExtras: bool

 :param options.axioms: Whether relevant axiomatic triples are added before chaining (can be a boolean, or the
 strings "yes" or "no").
 :type options.axioms: bool

 :param options.daxioms: Further datatype axiomatic triples are added to the output (can be a boolean, or the strings
 "yes" or "no").
 :type options.daxioms: bool

 :param options.format: Output format, can be "turtle" or "rdfxml".
 :type options.format: str

 :param options.iformat: Input format, can be "turtle", "rdfa", "json", "rdfxml", or "auto". "auto" means that the
 suffix of the file is considered: '.ttl'. '.html', 'json' or '.jsonld' respectively with 'xml' as a fallback.
 :type options.iformat: str

 :param options.trimming: Whether the extension to OWLRL should also include trimming.
 :type options.trimming: bool

 :param closureClass: Explicit class reference. If set, this overrides the various different other options to be
 used as an extension.
 :type closureClass: TODO(edmond.chuc@csiro.au): What class is this supposed to be?
 """

 # Original parameter definitions from old documentation.
 #
 # @param options: object with specific attributes, namely:
 # - options.sources: list of uris or file names for the source data; for each one if the name ends with 'ttl', it is
 # considered to be turtle, RDF/XML otherwise (this can be overwritten by the options.iformat, though)
 # - options.text: direct Turtle encoding of a graph as a text string (useful, eg, for a CGI call using a text field)
 # - options.owlClosure: can be yes or no
 # - options.rdfsClosure: can be yes or no
 # - options.owlExtras: can be yes or no; whether the extra rules beyond OWL 2 RL are used or not.
 # - options.axioms: whether relevant axiomatic triples are added before chaining (can be a boolean, or the strings
 # "yes" or "no")
 # - options.daxioms: further datatype axiomatic triples are added to the output (can be a boolean, or the strings
 # "yes" or "no")
 # - options.format: output format, can be "turtle" or "rdfxml"
 # - options.iformat: input format, can be "turtle", "rdfa", "json", "rdfxml", or "auto". "auto" means that the
 # suffix of the file is considered: '.ttl'. '.html', 'json' or '.jsonld' respectively with 'xml' as a fallback
 # - options.trimming: whether the extension to OWLRL should also include trimming
 # @param closureClass: explicit class reference. If set, this overrides the various different other options to be
 # used as an extension.

 def __check_yes_or_true(opt):
 return (
 opt is True
 or opt == "yes"
 or opt == "Yes"
 or opt == "True"
 or opt == "true"
)

 import warnings

 warnings.filterwarnings("ignore")
 if len(options.sources) == 0 and (
 options.text is None or len(options.text.strip()) == 0
):
 raise Exception("No graph specified either via a URI or text")

 graph = Graph()

 # Just to be sure that this attribute does not create issues with older versions of the service...
 # the try statement should be removed, eventually...
 iformat = "auto"
 try:
 iformat = options.iformat
 except:
 # exception can be raised if that attribute is not used at all, true for older versions
 pass

 # similar measure with the possible usage of the 'source' options
 try:
 if options.source is not None:
 options.sources.append(options.source)
 except:
 # exception can be raised if that attribute is not used at all, true for newer versions
 pass

 # Get the sources first. Note that a possible error is filtered out, namely to process the same file twice. This is
 # done by turning the input arguments into a set...
 for inp in set(options.sources):
 __parse_input(iformat, inp, graph)

 # add the possible extra text (ie, the text input on the HTML page)
 if options.text is not None:
 graph.parse(data=options.text, format="n3")

 # Get all the options right
 # noinspection PyPep8Naming
 owlClosure = __check_yes_or_true(options.owlClosure)
 # noinspection PyPep8Naming
 rdfsClosure = __check_yes_or_true(options.rdfsClosure)
 # noinspection PyPep8Naming
 owlExtras = __check_yes_or_true(options.owlExtras)
 try:
 trimming = __check_yes_or_true(options.trimming)
 except:
 trimming = False
 axioms = __check_yes_or_true(options.axioms)
 daxioms = __check_yes_or_true(options.daxioms)

 if owlClosure:
 interpret_owl_imports(iformat, graph)

 # @@@@ some smarter choice should be used later to decide what the closure class is!!! That should
 # also control the import management. Eg, if the superclass includes OWL...
 if closureClass is not None:
 closure_class = closureClass
 else:
 closure_class = return_closure_class(
 owlClosure, rdfsClosure, owlExtras, trimming
)

 DeductiveClosure(
 closure_class,
 improved_datatypes=True,
 rdfs_closure=rdfsClosure,
 axiomatic_triples=axioms,
 datatype_axioms=daxioms,
).expand(graph)

 if options.format == "rdfxml":
 return graph.serialize(format="pretty-xml")
 elif options.format == "json":
 return graph.serialize(format="json-ld")
 else:
 return graph.serialize(format="turtle")

 Source code for owlrl.Closure

-*- coding: utf-8 -*-
#
"""
The generic superclasses for various rule based semantics and the possible extensions.

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

import rdflib
from rdflib.namespace import RDF
from rdflib import BNode, Literal
from .Namespaces import ERRNS

debugGlobal = False
offlineGeneration = False

##
noinspection PyMethodMayBeStatic,PyPep8Naming,PyPep8Naming
[docs]class Core:
 """
 Core of the semantics management, dealing with the RDFS and other Semantic triples. The only
 reason to have it in a separate class is for an easier maintainability.

 This is a common superclass only. In the present module, it is subclassed by
 a :class:`.RDFSClosure.RDFS_Semantics` class and a :class:`.OWLRL.OWLRL_Semantics` classes.
 There are some methods that are implemented in the subclasses only, ie, this class cannot be used by itself!

 :param graph: The RDF graph to be extended.
 :type graph: :class:`rdflib.Graph`

 :param axioms: Whether axioms should be added or not.
 :type axioms: bool

 :param daxioms: Whether datatype axioms should be added or not.
 :type daxioms: bool

 :param rdfs: Whether RDFS inference is also done (used in subclassed only).
 :type rdfs: bool

 :var IMaxNum: Maximal index of :code:`rdf:_i` occurrence in the graph.
 :type IMaxNum: int

 :var graph: The real graph.
 :type graph: :class:`rdflib.Graph`

 :var axioms: Whether axioms should be added or not.
 :type axioms: bool

 :var daxioms: Whether datatype axioms should be added or not.
 :type daxioms: bool

 :var added_triples: Triples added to the graph, conceptually, during one processing cycle.
 :type added_triples: set of triples

 :var error_messages: Error messages (typically inconsistency messages in OWL RL) found during processing. These
 are added to the final graph at the very end as separate BNodes with error messages.
 :type error_messages: list of str

 :var rdfs: Whether RDFS inference is also done (used in subclassed only).
 :type rdfs: bool
 """

 # noinspection PyUnusedLocal
 def __init__(self, graph, axioms, daxioms, rdfs=False):
 """
 The parameter descriptions here are from the old documentation.

 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether axioms should be added or not
 @type axioms: boolean
 @param daxioms: whether datatype axioms should be added or not
 @type daxioms: boolean
 @param rdfs: whether RDFS inference is also done (used in subclassed only)
 @type rdfs: boolean
 """
 self._debug = debugGlobal

 # Calculate the maximum 'n' value for the '_i' type predicates (see Horst's paper)
 n = 1
 maxnum = 0
 cont = True
 while cont:
 cont = False
 predicate = RDF[("_%d" % n)]
 for (s, p, o) in graph.triples((None, predicate, None)):
 # there is at least one if we got here
 maxnum = n
 n += 1
 cont = True
 self.IMaxNum = maxnum

 self.graph = graph
 self.axioms = axioms
 self.daxioms = daxioms

 self.rdfs = rdfs

 self.error_messages = []
 self.empty_stored_triples()

[docs] def add_error(self, message):
 """
 Add an error message

 :param message: Error message.
 :type message: str
 """
 if message not in self.error_messages:
 self.error_messages.append(message)

[docs] def pre_process(self):
 """
 Do some pre-processing step. This method before anything else in the closure. By default, this method is empty,
 subclasses can add content to it by overriding it.
 """
 pass

[docs] def post_process(self):
 """
 Do some post-processing step. This method when all processing is done, but before handling possible
 errors (ie, the method can add its own error messages). By default, this method is empty, subclasses
 can add content to it by overriding it.
 """
 pass

[docs] def rules(self, t, cycle_num):
 """
 The core processing cycles through every tuple in the graph and dispatches it to the various methods
 implementing a specific group of rules. By default, this method raises an exception; indeed, subclasses
 must add content to by overriding it.

 :param t: One triple on which to apply the rules.
 :type t: tuple

 :param cycle_num: Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
 also used locally to collect the bnodes in the graph.
 :type cycle_num: int
 """
 raise Exception(
 "This method should not be called directly; subclasses should override it"
)

[docs] def add_axioms(self):
 """
 Add axioms.

 This is only a placeholder and raises an exception by default; subclasses *must* fill this with real content
 """
 raise Exception(
 "This method should not be called directly; subclasses should override it"
)

[docs] def add_d_axioms(self):
 """
 Add d axioms.

 This is only a placeholder and raises an exception by default; subclasses I{must} fill this with real content
 """
 raise Exception(
 "This method should not be called directly; subclasses should override it"
)

[docs] def one_time_rules(self):
 """
 This is only a placeholder; subclasses should fill this with real content. By default, it is just an empty call.
 This set of rules is invoked only once and not in a cycle.
 """
 pass

 # noinspection PyAttributeOutsideInit
[docs] def empty_stored_triples(self):
 """
 Empty the internal store for triples.
 """
 self.added_triples = set()

[docs] def flush_stored_triples(self):
 """
 Send the stored triples to the graph, and empty the container.
 """
 for t in self.added_triples:
 self.graph.add(t)
 self.empty_stored_triples()

[docs] def store_triple(self, t):
 """
 In contrast to its name, this does not yet add anything to the graph itself, it just stores the tuple in an
 internal set (:code:`Core.added_triples`). (It is important for this to be a set: some of the rules in the
 various closures may generate the same tuples several times.) Before adding the tuple to the set, the method
 checks whether the tuple is in the final graph already (if yes, it is not added to the set).

 The set itself is emptied at the start of every processing cycle; the triples are then effectively added to the
 graph at the end of such a cycle. If the set is actually empty at that point, this means that the cycle has not
 added any new triple, and the full processing can stop.

 :param t: The triple to be added to the graph, unless it is already there
 :type t: tuple (s,p,o)
 """
 (s, p, o) = t
 if not isinstance(p, Literal) and t not in self.graph:
 if self._debug or offlineGeneration:
 print(t)
 self.added_triples.add(t)

 # noinspection PyAttributeOutsideInit
[docs] def closure(self):
 """
 Generate the closure the graph. This is the real 'core'.

 The processing rules store new triples via the separate method :func:`.Core.store_triple` which stores
 them in the :code:`added_triples` array. If that array is empty at the end of a cycle,
 it means that the whole process can be stopped.

 If required, the relevant axiomatic triples are added to the graph before processing in cycles. Similarly
 the exchange of literals against bnodes is also done in this step (and restored after all cycles are over).
 """
 self.pre_process()

 # Handling the axiomatic triples. In general, this means adding all tuples in the list that
 # forwarded, and those include RDF or RDFS. In both cases the relevant parts of the container axioms should also
 # be added.
 if self.axioms:
 self.add_axioms()

 # Add the datatype axioms, if needed (note that this makes use of the literal proxies, the order of the call
 # is important!
 if self.daxioms:
 self.add_d_axioms()

 self.flush_stored_triples()

 # Get first the 'one-time rules', ie, those that do not need an extra round in cycles down the line
 self.one_time_rules()
 self.flush_stored_triples()

 # Go cyclically through all rules until no change happens
 new_cycle = True
 cycle_num = 0
 while new_cycle:
 # yes, there was a change, let us go again
 cycle_num += 1

 # DEBUG: print the cycle number out
 if self._debug:
 print("----- Cycle #%d" % cycle_num)

 # go through all rules, and collect the replies (to see whether any change has been done)
 # the new triples to be added are collected separately not to interfere with
 # the current graph yet
 self.empty_stored_triples()

 # Execute all the rules; these might fill up the added triples array
 for t in self.graph:
 self.rules(t, cycle_num)

 # Add the tuples to the graph (if necessary, that is). If any new triple has been generated, a new cycle
 # will be necessary...
 new_cycle = len(self.added_triples) > 0

 for t in self.added_triples:
 self.graph.add(t)

 self.post_process()
 self.flush_stored_triples()

 # Add possible error messages
 if self.error_messages:
 # I am not sure this is the right vocabulary to use for this purpose, but I haven't found anything!
 # I could, of course, come up with my own, but I am not sure that would be kosher...
 self.graph.bind("err", "http://www.daml.org/2002/03/agents/agent-ont#")
 for m in self.error_messages:
 message = BNode()
 self.graph.add((message, RDF.type, ERRNS.ErrorMessage))
 self.graph.add((message, ERRNS.error, Literal(m)))

 Source code for owlrl.CombinedClosure

-*- coding: utf-8 -*-
#
"""
The combined closure: performing *both* the OWL 2 RL and RDFS closures.

The two are very close but there are some rules in RDFS that are not in OWL 2 RL (eg, the axiomatic
triples concerning the container membership properties). Using this closure class the
OWL 2 RL implementation becomes a full extension of RDFS.

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

from rdflib.namespace import OWL, RDF, RDFS

from owlrl.RDFSClosure import RDFS_Semantics
from owlrl.OWLRL import OWLRL_Semantics

##

noinspection PyPep8Naming
[docs]class RDFS_OWLRL_Semantics(RDFS_Semantics, OWLRL_Semantics):
 """
 Common subclass of the RDFS and OWL 2 RL semantic classes. All methods simply call back
 to the functions in the superclasses. This may lead to some unnecessary duplication of terms
 and rules, but it it not so bad. Also, the additional identification defined for OWL Full,
 ie, Resource being the same as Thing and OWL and RDFS classes being identical are added to the
 triple store.

 Note that this class is also a possible user extension point: subclasses can be created that
 extend the standard functionality by extending this class. This class *always*} performs RDFS inferences.
 Subclasses have to set the :code:`self.rdfs` flag explicitly to the requested value if that is to be controlled.

 :param graph: The RDF graph to be extended.
 :type graph: :class:`rdflib.Graph`

 :param axioms: Whether (non-datatype) axiomatic triples should be added or not.
 :type axioms: bool

 :param daxioms: Whether datatype axiomatic triples should be added or not.
 :type daxioms: bool

 :param rdfs: Placeholder flag (used in subclassed only, it is always defaulted to True in this class)
 :type rdfs: bool

 :var full_binding_triples: Additional axiom type triples that are added to the combined semantics; these 'bind'
 the RDFS and the OWL worlds together.

 :var rdfs: (bool) Whether RDFS inference is to be performed or not. In this class instance the value is *always*
 :code:`True`, subclasses may explicitly change it at initialization time.
 :type rdfs: bool
 """

 full_binding_triples = [
 (OWL.Thing, OWL.equivalentClass, RDFS.Resource),
 (RDFS.Class, OWL.equivalentClass, OWL.Class),
 (OWL.DataRange, OWL.equivalentClass, RDFS.Datatype),
]

 def __init__(self, graph, axioms, daxioms, rdfs=True):
 """
 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether (non-datatype) axiomatic triples should be added or not
 @type axioms: bool
 @param daxioms: whether datatype axiomatic triples should be added or not
 @type daxioms: bool
 @param rdfs: placeholder flag (used in subclassed only, it is always defaulted to True in this class)
 @type rdfs: boolean
 """
 OWLRL_Semantics.__init__(self, graph, axioms, daxioms, rdfs)
 RDFS_Semantics.__init__(self, graph, axioms, daxioms, rdfs)
 self.rdfs = True

 # noinspection PyMethodMayBeStatic
[docs] @staticmethod
 def add_new_datatype(
 uri,
 conversion_function,
 datatype_list,
 subsumption_dict=None,
 subsumption_key=None,
 subsumption_list=None,
):
 """
 If an extension wants to add new datatypes, this method should be invoked at initialization time.

 :param uri: URI for the new datatypes, like owl_ns["Rational"].

 :param conversion_function: A function converting the lexical representation of the datatype to a Python value,
 possibly raising an exception in case of unsuitable lexical form.

 :param datatype_list: List of datatypes already in use that has to be checked.
 :type datatype_list: list

 :param subsumption_dict: Dictionary of subsumption hierarchies (indexed by the datatype URI-s).
 :type subsumption_dict: dict

 :param subsumption_key: Key in the dictionary, if None, the uri parameter is used.
 :type subsumption_key: str

 :param subsumption_list: List of subsumptions associated to a subsumption key (ie, all datatypes that are
 superclasses of the new datatype).
 :type subsumption_list: list
 """
 from .DatatypeHandling import AltXSDToPYTHON, use_Alt_lexical_conversions

 if datatype_list:
 datatype_list.append(uri)

 if subsumption_dict and subsumption_list:
 if subsumption_key:
 subsumption_dict[subsumption_key] = subsumption_list
 else:
 subsumption_dict[uri] = subsumption_list

 AltXSDToPYTHON[uri] = conversion_function
 use_Alt_lexical_conversions()

[docs] def post_process(self):
 """
 Do some post-processing step. This method when all processing is done, but before handling possible
 errors (I.e., the method can add its own error messages). By default, this method is empty, subclasses
 can add content to it by overriding it.
 """
 OWLRL_Semantics.post_process(self)

[docs] def rules(self, t, cycle_num):
 """
 :param t: A triple (in the form of a tuple).
 :type t: tuple

 :param cycle_num: Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
 also used locally to collect the bnodes in the graph.
 :type cycle_num: int
 """
 OWLRL_Semantics.rules(self, t, cycle_num)
 if self.rdfs:
 RDFS_Semantics.rules(self, t, cycle_num)

[docs] def add_axioms(self):
 if self.rdfs:
 RDFS_Semantics.add_axioms(self)
 OWLRL_Semantics.add_axioms(self)

[docs] def add_d_axioms(self):
 if self.rdfs:
 RDFS_Semantics.add_d_axioms(self)
 OWLRL_Semantics.add_d_axioms(self)

[docs] def one_time_rules(self):
 """Adds some extra axioms and calls for the d_axiom part of the OWL Semantics."""
 for t in self.full_binding_triples:
 self.store_triple(t)

 # Note that the RL one time rules include the management of datatype which is a true superset
 # of the rules in RDFS. It is therefore unnecessary to add those even self.rdfs is True.
 OWLRL_Semantics.one_time_rules(self)

 Source code for owlrl.DatatypeHandling

-*- coding: utf-8 -*-
#
"""
Most of the XSD datatypes are handled directly by RDFLib. However, in some cases, that is not good enough. There are two
major reasons for this:

#. Some datatypes are missing from RDFLib and required by OWL 2 RL and/or RDFS.
#. In other cases, though the datatype is present, RDFLib is fairly lax in checking the lexical value of those datatypes. Typical case is boolean.

Some of these deficiencies are handled by this module. All the functions convert the lexical value into a
python datatype (or return the original string if this is not possible) which will be used, e.g.,
for comparisons (equalities). If the lexical value constraints are not met, exceptions are raised.

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/
"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

noinspection PyPep8Naming
from owlrl.RDFS import RDFNS as ns_rdf
from rdflib.namespace import RDF, XSD

from rdflib.term import XSDToPython, Literal, _toPythonMapping

import datetime, time, re
from decimal import Decimal

noinspection PyMissingConstructor,PyPep8Naming
class _namelessTZ(datetime.tzinfo):
 """
 (Nameless) timezone object. The python datetime object requires timezones as
 a specific object added to the conversion, rather than the explicit hour and minute
 difference used by XSD. This class is used to wrap around the hour/minute values.

 :param hours: Hour offset.
 :param minutes: Minute offset
 """

 def __init__(self, hours, minutes):
 """
 @param hours: hour offset
 @param minutes: minute offset
 """
 self.__offset = datetime.timedelta(hours=hours, minutes=minutes)
 self.__name = "nameless"

 def utcoffset(self, dt):
 return self.__offset

 def tzname(self, dt):
 return self.__name

 def dst(self, dt):
 return datetime.timedelta(0)

noinspection PyPep8Naming
def _returnTimeZone(incoming_v):
 """Almost all time/date related methods require the extraction of optional time zone information.
 @param incoming_v: the time/date string
 @return (v,timezone) tuple; 'v' is the input string with the timezone info cut off, 'timezone' is a L{_namelessTZ}
 instance or None
 """
 if incoming_v[-1] == "Z":
 v = incoming_v[:-1]
 tzone = _namelessTZ(0, 0)
 else:
 pattern = r".*(\+|-)([0-9][0-9]):([0-9][0-9])"
 match = re.match(pattern, incoming_v)
 if match is None:
 v = incoming_v
 tzone = None
 else:
 hours = int(match.groups()[1])
 if match.groups()[0] == "-":
 hours = -hours - 1
 minutes = int(match.groups()[2])
 v = incoming_v[:-6]
 tzone = _namelessTZ(hours, minutes)
 return v, tzone

Booleans
noinspection PyPep8Naming
def _strToBool(v):
 """The built-in conversion to boolean is way too lax. The xsd specification requires that only true, false, 1 or 0 should be used...
 @param v: the literal string defined as boolean
 @return corresponding boolean value
 @raise ValueError: invalid boolean values
 """
 if v.lower() == "true" or v.lower() == "1":
 return True
 elif v.lower() == "false" or v.lower() == "0":
 return False
 else:
 raise ValueError("Invalid boolean literal value %s" % v)

Decimals
noinspection PyPep8Naming
def _strToDecimal(v):
 """The built in datatype handling for RDFLib maps a decimal number to float, but the python version 2.4 and upwards
 also has a Decimal number. Better make use of that to use very high numbers.
 However, there is also a big difference between Python's decimal and XSD's decimal, because the latter does not
 allow for an exponential normal form (why???). This must be filtered out.
 @param v: the literal string defined as decimal
 @return Decimal
 @raise ValueError: invalid decimal value
 """
 # check whether the lexical form of 'v' is o.k.
 if v.find("E") != -1 or v.find("e") != -1:
 # this is an invalid lexical form, though would be accepted by Python
 raise ValueError("Invalid decimal literal value %s" % v)
 else:
 return Decimal(v)

ANY URIS
set of characters allowed in a hexadecimal number
_hexc = ["A", "B", "C", "D", "E", "F", "a", "b", "c", "d", "e", "f"]
set of numerals
_numb = ["1", "2", "3", "4", "5", "6", "7", "8", "9", "0"]
noinspection PyPep8Naming
def _strToAnyURI(v):
 """Rudimentary test for the AnyURI value. If it is a relative URI, then some tests are done to filter out
 mistakes. I am not sure this is the full implementation of the RFC, though, may have to be checked at some point
 later.
 @param v: the literal string defined as a URI
 @return the incoming value
 @raise ValueError: invalid URI value
 """
 import urllib.parse

 if len(v) == 0:
 return v
 if urllib.parse.urlsplit(v)[0] != "":
 # this means that there is a proper scheme, the URI should be kosher
 return v
 else:
 # this is meant to be a relative URI.
 # If I am correct, that cannot begin with one or more "?" or ":" characters
 # all others are o.k.
 # if it begins with a % then it should be followed by two hexa characters,
 # otherwise it is also a bug
 if v[0] == "%":
 if (
 len(v) >= 3
 and (v[1] in _hexc or v[1] in _numb)
 and (v[2] in _hexc or v[2] in _numb)
):
 return v
 else:
 raise ValueError("Invalid IRI %s" % v)
 elif v[0] == "?" or v[0] == ":":
 raise ValueError("Invalid IRI %s" % v)
 else:
 return v

Base64Binary
noinspection PyPep8Naming
def _strToBase64Binary(v):
 """Rudimentary test for the base64Binary value. The problem is that the built-in b64 module functions ignore the
 fact that only a certain family of characters are allowed to appear in the lexical value, so this is checked first.
 @param v: the literal string defined as a base64encoded string
 @return the decoded (binary) content
 @raise ValueError: invalid base 64 binary value
 """
 import base64

 if v.replace("=", "x").replace("+", "y").replace("/", "z").isalnum():
 try:
 return base64.standard_b64decode(v)
 except:
 raise ValueError("Invalid Base64Binary %s" % v)
 else:
 raise ValueError("Invalid Base64Binary %s" % v)

Numerical types
limits for unsigned bytes
_limits_unsignedByte = [-1, 256]

limits for bytes
_limits_byte = [-129, 128]

limits for unsigned int
_limits_unsignedInt = [-1, 4294967296]

limits for int
_limits_int = [-2147483649, 2147483648]

limits for unsigned short
_limits_unsignedShort = [-1, 65536]

limits for short
_limits_short = [-32769, 32768]

limits for unsigned long
_limits_unsignedLong = [-1, 18446744073709551616]

limits for long
_limits_long = [-9223372036854775809, 9223372036854775808]

limits for positive integer
_limits_positiveInteger = [0, None]

limits for non positive integer
_limits_nonPositiveInteger = [None, 1]

limits for non negative integer
_limits_nonNegativeInteger = [-1, None]

limits for negative integer
_limits_negativeInteger = [None, 0]

noinspection PyPep8Naming,PyBroadException
def _strToBoundNumeral(v, interval, conversion):
 """Test (and convert) a generic numerical type, with a check against a lower and upper limit.
 @param v: the literal string to be converted
 @param interval: lower and upper bounds (non inclusive). If the value is None, no comparison should be done
 @param conversion: conversion function, ie, int, long, etc
 @raise ValueError: invalid value
 """
 try:
 i = conversion(v)
 if (interval[0] is None or interval[0] < i) and (
 interval[1] is None or i < interval[1]
):
 return i
 except:
 pass
 raise ValueError("Invalid numerical value %s" % v)

Double and float
noinspection PyPep8Naming
def _strToDouble(v):
 """Test and convert a double value into a Decimal or float. Raises an exception if the number is outside the
 permitted range, ie, 1.0E+310 and 1.0E-330. To be on the safe side (python does not have double!) Decimals are used
 if possible. Upper and lower values, as required by xsd, are checked (and these fixed values are the reasons
 why Decimal is used!)

 @param v: the literal string defined as a double
 @return Decimal
 @raise ValueError: invalid value
 """
 try:
 value = Decimal(v)
 upper = Decimal("1.0E+310")
 lower = Decimal("1.0E-330")
 if lower < abs(value) < upper:
 # bingo
 return value
 else:
 raise ValueError("Invalid double %s" % v)
 except:
 # there was a problem in creating a decimal...
 raise ValueError("Invalid double %s" % v)

noinspection PyPep8Naming
def _strToFloat(v):
 """Test and convert a float value into Decimal or (python) float. Raises an exception if the number is outside the
 permitted range, ie, 1.0E+40 and 1.0E-50. (And these fixed values are the reasons why Decimal is used!)

 @param v: the literal string defined as a float
 @return Decimal if the local python version is >= 2.4, float otherwise
 @raise ValueError: invalid value
 """
 try:
 value = Decimal(v)
 upper = Decimal("1.0E+40")
 lower = Decimal("1.0E-50")
 if lower < abs(value) < upper:
 # bingo
 return value
 else:
 raise ValueError("Invalid float %s" % v)
 except:
 # there was a problem in creating a decimal...
 raise ValueError("Invalid float %s" % v)

hexa
noinspection PyPep8Naming
def _strToHexBinary(v):
 """Test (and convert) hexa integer values. The number of characters should be even.
 @param v: the literal string defined as a hexa number
 @return long value
 @raise ValueError: invalid value
 """
 # first of all, the number of characters must be even according to the xsd spec:
 length = len(v)
 if (length / 2) * 2 != length:
 raise ValueError("Invalid hex binary number %s" % v)
 return int(v, 16)

Datetime, date timestamp, etc
noinspection PyPep8Naming
def _strToDateTimeAndStamp(incoming_v, timezone_required=False):
 """Test (and convert) datetime and date timestamp values.
 @param incoming_v: the literal string defined as the date and time
 @param timezone_required: whether the timezone is required (ie, for date timestamp) or not
 @return datetime
 @rtype: datetime.datetime
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (v, tzone) = _returnTimeZone(incoming_v)

 # Check on the timezone. For time date stamp object it is required
 if timezone_required and tzone is None:
 raise ValueError("Invalid datetime %s" % incoming_v)

 # The microseconds should be handled here...
 final_v = v
 milliseconds = 0
 milpattern = r"(.*)(\.)([0-9]*)"
 match = re.match(milpattern, v)
 if match is not None:
 # we have a millisecond portion...
 try:
 final_v = match.groups()[0]
 milliseconds = int(match.groups()[2])
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)
 #
 # By now, the pattern should be clear
 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%Y-%m-%dT%H:%M:%S")
 if tzone is not None:
 return datetime.datetime(
 tstr.tm_year,
 tstr.tm_mon,
 tstr.tm_mday,
 tstr.tm_hour,
 tstr.tm_min,
 tstr.tm_sec,
 milliseconds,
 tzone,
)
 else:
 return datetime.datetime(
 tstr.tm_year,
 tstr.tm_mon,
 tstr.tm_mday,
 tstr.tm_hour,
 tstr.tm_min,
 tstr.tm_sec,
 milliseconds,
)
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)

noinspection PyPep8Naming
def _strToTime(incoming_v):
 """Test (and convert) time values.
 @param incoming_v: the literal string defined as time value
 @return time
 @rtype datetime.time
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (v, tzone) = _returnTimeZone(incoming_v)

 # The microseconds should be handled here...
 final_v = v
 milliseconds = 0
 milpattern = r"(.*)(\.)([0-9]*)"
 match = re.match(milpattern, v)
 if match is not None:
 # we have a millisecond portion...
 try:
 final_v = match.groups()[0]
 milliseconds = int(match.groups()[2])
 except:
 raise ValueError("Invalid datetime %s" % incoming_v)
 #
 # By now, the pattern should be clear
 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%H:%M:%S")
 if tzone is not None:
 return datetime.time(
 tstr.tm_hour, tstr.tm_min, tstr.tm_sec, milliseconds, tzone
)
 else:
 return datetime.time(tstr.tm_hour, tstr.tm_min, tstr.tm_sec, milliseconds)
 except:
 raise ValueError("Invalid time %s" % incoming_v)

noinspection PyPep8Naming
def _strToDate(incoming_v):
 """Test (and convert) date values.
 @param incoming_v: the literal string defined as date (in iso format)
 @return date
 @return datetime.date
 @raise ValueError: invalid datetime or date timestamp
 """

 # First, handle the timezone portion, if there is any
 (final_v, tzone) = _returnTimeZone(incoming_v)

 # This may raise an exception...
 try:
 tstr = time.strptime(final_v, "%Y-%m-%d")
 return datetime.date(tstr.tm_year, tstr.tm_mon, tstr.tm_mday)
 except:
 raise ValueError("Invalid date %s" % incoming_v)

The 'g' series for dates
The 'g' datatypes (eg, gYear) cannot be directly represented as a python datatype
the series of methods below simply check whether the incoming string is o.k., but the
returned value is the same as the original
noinspection PyPep8Naming
def _strTogYearMonth(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime(v + "-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gYearMonth %s" % v)

noinspection PyPep8Naming
def _strTogYear(v):
 """Test gYear value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime(v + "-01-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gYear %s" % v)

noinspection PyPep8Naming
def _strTogMonthDay(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2008-" + v, "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gMonthDay %s" % v)

noinspection PyPep8Naming
def _strTogDay(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2001-01-" + v, "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gDay %s" % v)

noinspection PyPep8Naming
def _strTogMonth(v):
 """Test gYearMonth value
 @param v: the literal string
 @return v
 @raise ValueError: invalid value
 """
 try:
 time.strptime("2001-" + v + "-01", "%Y-%m-%d")
 return v
 except:
 raise ValueError("Invalid gMonth %s" % v)

XML Literal
noinspection PyPep8Naming
def _strToXMLLiteral(v):
 """Test (and convert) XML Literal values.
 @param v: the literal string defined as an xml literal
 @return the canonical version of the same xml text
 @raise ValueError: incorrect xml string
 """
 import xml.dom.minidom

 try:
 dom = xml.dom.minidom.parseString(v)
 return dom.toxml()
 except:
 raise ValueError("Invalid XML Literal %s" % v)

language, NMTOKEN, NAME, etc
regular expression for a 'language' datatype
_re_language = r"[a-zA-Z]{1,8}(-[a-zA-Z0-9]{1,8})*"

regexp for NMTOKEN. It must be used with a re.U flag (the '(?U' regexp form did not work. It may depend on the
locale...)
_re_NMTOKEN = r"[\w:_.\-]+"

characters not permitted at a starting position for Name (otherwise Name is like NMTOKEN
_re_Name_ex = [".", "-"] + _numb

regexp for NCName. It must be used with a re.U flag (the '(?U' regexp form did not work. It may depend on the
locale...)
_re_NCName = r"[\w_.\-]+"

characters not permitted at a starting position for NCName
_re_NCName_ex = [".", "-"] + _numb

noinspection PyDefaultArgument,PyPep8Naming,PyPep8Naming
def _strToVal_Regexp(v, regexp, flag=0, excludeStart=[]):
 """Test (and convert) a generic string type, with a check against a regular expression.
 @param v: the literal string to be converted
 @param regexp: the regular expression to check against
 @param flag: flags to be used in the regular expression
 @param excludeStart: array of characters disallowed in the first position
 @return original string
 @raise ValueError: invalid value
 """
 match = re.match(regexp, v, flag)
 if match is None or match.end() != len(v):
 raise ValueError("Invalid literal %s" % v)
 else:
 if len(excludeStart) > 0 and v[0] in excludeStart:
 raise ValueError("Invalid literal %s" % v)
 return v

Disallowed characters in a token or a normalized string, as a regexp
_re_token = "[^\n\t\r]+"

noinspection PyPep8Naming
def _strToToken(v):
 """Test (and convert) a string to a token.
 @param v: the literal string to be converted
 @return original string
 @raise ValueError: invalid value
 """
 if len(v) == 0:
 return v
 # filter out the case when there are new lines and similar (if there is a problem, an exception is raised)
 _strToVal_Regexp(v, _re_token)
 v1 = " ".join(v.strip().split())
 # normalize the string, and see if the result is the same:
 if len(v1) == len(v):
 # no characters lost, ie, no unnecessary spaces
 return v
 else:
 raise ValueError("Invalid literal %s" % v)

plain literal
noinspection PyPep8Naming
def _strToPlainLiteral(v):
 """Test (and convert) a plain literal
 @param v: the literal to be converted
 @return a new RDFLib Literal with language tag
 @raise ValueError: invalid value
 """
 reg = "(.*)@([^@]*)"
 # a plain literal must match this regexp!
 match = re.match(reg, v)
 if match is None:
 raise ValueError("Invalid plain literal %s" % v)
 else:
 lit = match.groups()[0]
 if len(match.groups()) == 1 or match.groups()[1] == "":
 # no language tag
 return Literal(lit)
 else:
 lang = match.groups()[1]
 # check if this is a correct language tag. Note that can raise an exception!
 try:
 lang = _strToVal_Regexp(lang, _re_language)
 return Literal(lit, lang=lang.lower())
 except:
 raise ValueError("Invalid plain literal %s" % v)

###
Replacement of RDFLib's conversion function. Each entry assigns a function to an XSD datatype, attempting to convert
a string to a Python datatype (or raise an exception if some problem is found)
AltXSDToPYTHON = {
 XSD.language: lambda v: _strToVal_Regexp(v, _re_language),
 XSD.NMTOKEN: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U),
 XSD.Name: lambda v: _strToVal_Regexp(v, _re_NMTOKEN, re.U, _re_Name_ex),
 XSD.NCName: lambda v: _strToVal_Regexp(v, _re_NCName, re.U, _re_NCName_ex),
 XSD.token: _strToToken,
 RDF.PlainLiteral: _strToPlainLiteral,
 XSD.boolean: _strToBool,
 XSD.decimal: _strToDecimal,
 XSD.anyURI: _strToAnyURI,
 XSD.base64Binary: _strToBase64Binary,
 XSD.double: _strToDouble,
 XSD.float: _strToFloat,
 XSD.byte: lambda v: _strToBoundNumeral(v, _limits_byte, int),
 XSD.int: lambda v: _strToBoundNumeral(v, _limits_int, int),
 XSD.long: lambda v: _strToBoundNumeral(v, _limits_long, int),
 XSD.positiveInteger: lambda v: _strToBoundNumeral(v, _limits_positiveInteger, int),
 XSD.nonPositiveInteger: lambda v: _strToBoundNumeral(
 v, _limits_nonPositiveInteger, int
),
 XSD.negativeInteger: lambda v: _strToBoundNumeral(v, _limits_negativeInteger, int),
 XSD.nonNegativeInteger: lambda v: _strToBoundNumeral(
 v, _limits_nonNegativeInteger, int
),
 XSD.short: lambda v: _strToBoundNumeral(v, _limits_short, int),
 XSD.unsignedByte: lambda v: _strToBoundNumeral(v, _limits_unsignedByte, int),
 XSD.unsignedShort: lambda v: _strToBoundNumeral(v, _limits_unsignedShort, int),
 XSD.unsignedInt: lambda v: _strToBoundNumeral(v, _limits_unsignedInt, int),
 XSD.unsignedLong: lambda v: _strToBoundNumeral(v, _limits_unsignedLong, int),
 XSD.hexBinary: _strToHexBinary,
 XSD.dateTime: lambda v: _strToDateTimeAndStamp(v, False),
 XSD.dateTimeStamp: lambda v: _strToDateTimeAndStamp(v, True),
 RDF.XMLLiteral: _strToXMLLiteral,
 XSD.integer: int,
 XSD.string: lambda v: v,
 RDF.HTML: lambda v: v,
 XSD.normalizedString: lambda v: _strToVal_Regexp(v, _re_token),
 # These are RDFS specific...
 XSD.time: _strToTime,
 XSD.date: _strToDate,
 XSD.gYearMonth: _strTogYearMonth,
 XSD.gYear: _strTogYear,
 XSD.gMonthDay: _strTogMonthDay,
 XSD.gDay: _strTogDay,
 XSD.gMonth: _strTogMonth,
}

[docs]def use_Alt_lexical_conversions():
 """
 Registering the datatypes item for RDFLib, ie, bind the dictionary values. The 'bind' method of RDFLib adds
 extra datatypes to the registered ones in RDFLib, though the table used here (I.e., :py:data:`.AltXSDToPYTHON`) actually
 overrides all of the default conversion routines. The method also add a Decimal entry to the :code:`PythonToXSD` list of
 RDFLib.
 """
 _toPythonMapping.update(AltXSDToPYTHON)

[docs]def use_RDFLib_lexical_conversions():
 """
 Restore the original (ie, RDFLib) set of lexical conversion routines.
 """
 _toPythonMapping.update(XSDToPython)

###
This module can pretty much tested individually...

if __name__ == "__main__":
 import sys

 dtype = sys.argv[1]
 string = sys.argv[2]
 datatype = XSD[dtype]
 result = AltXSDToPYTHON[datatype](string)
 print(type(result))
 print(result)

 Source code for owlrl.OWLRL

#!/d/Bin/Python/python.exe
-*- coding: utf-8 -*-
#
"""
This module is a **brute force** implementation of the OWL 2 RL profile.

RDFLib works with 'generalized' RDF, meaning that triples with a BNode predicate are *allowed*. This is good because,
e.g., some of the triples generated for RDF from an OWL 2 functional syntax might look like :code:`[owl:inverseOf p]`, and the
RL rules would then operate on such generalized triple. However, as a last, post processing steps, these triples are
removed from the graph before serialization to produce 'standard' RDF (which is o.k. for RL, too, because the
consequent triples are all right, generalized triples might have had a role in the deduction steps only).

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

from collections import defaultdict

import rdflib
from rdflib import BNode
from rdflib.namespace import OWL, RDF, RDFS

from owlrl.Closure import Core
from owlrl.AxiomaticTriples import OWLRL_Axiomatic_Triples, OWLRL_D_Axiomatic_Triples
from owlrl.AxiomaticTriples import OWLRL_Datatypes_Disjointness

OWLRL_Annotation_properties = [
 RDFS.label,
 RDFS.comment,
 RDFS.seeAlso,
 RDFS.isDefinedBy,
 OWL.deprecated,
 OWL.versionInfo,
 OWL.priorVersion,
 OWL.backwardCompatibleWith,
 OWL.incompatibleWith,
]

from .XsdDatatypes import OWL_RL_Datatypes, OWL_Datatype_Subsumptions
from .DatatypeHandling import AltXSDToPYTHON

identity = lambda v: v

###

OWL-R Semantics class
#
#
As an editing help: each rule is prefixed by RULE XXXX where XXXX is the acronym given in the profile document.
This helps in referring back to the spec...
noinspection PyPep8Naming, PyPep8Naming, PyBroadException
class OWLRL_Semantics(Core):
 """
 OWL 2 RL Semantics class, i.e., implementation of the OWL 2 RL closure graph.

 .. note:: Note that the module does *not* implement the so called Datatype entailment rules, simply because the underlying
 RDFLib does not implement the datatypes (i.e., RDFLib will not make the literal "1.00" and "1.00000" identical,
 although even with all the ambiguities on datatypes, this *should* be made equal...).

 Also, the so-called extensional entailment rules (Section 7.3.1 in the RDF Semantics document) have not been
 implemented either.

 The comments and references to the various rule follow the names as used in the `OWL 2 RL
 document`_.

 .. _OWL 2 RL document: http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

 :param graph: The RDF graph to be extended.
 :type graph: :class:`rdflib.Graph`

 :param axioms: Whether (non-datatype) axiomatic triples should be added or not.
 :type axioms: bool

 :param daxioms: Whether datatype axiomatic triples should be added or not.
 :type daxioms: bool

 :param rdfs: Whether RDFS inference is also done (used in subclassed only).
 :type rdfs: bool
 """

 def __init__(self, graph, axioms, daxioms, rdfs=None):
 """
 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether (non-datatype) axiomatic triples should be added or not
 @type axioms: bool
 @param daxioms: whether datatype axiomatic triples should be added or not
 @type daxioms: bool
 @param rdfs: whether RDFS inference is also done (used in subclassed only)
 @type rdfs: boolean
 """
 Core.__init__(self, graph, axioms, daxioms, rdfs)
 self.bnodes = []

 def _list(self, l):
 """
 Shorthand to get a list of values (ie, from an rdf:List structure) starting at a head

 @param l: RDFLib resource, should be the head of an rdf:List
 @return: array of resources
 """
 return [ch for ch in self.graph.items(l)]

 def post_process(self):
 """
 Remove triples with Bnode predicates. The Bnodes in the graph are collected in the first cycle run.
 """
 to_be_removed = []
 for b in self.bnodes:
 for t in self.graph.triples((None, b, None)):
 if t not in to_be_removed:
 to_be_removed.append(t)
 for t in to_be_removed:
 self.graph.remove(t)

 def add_axioms(self):
 """
 Add axioms
 """
 for t in OWLRL_Axiomatic_Triples:
 self.graph.add(t)

 def add_d_axioms(self):
 """
 Add the datatype axioms
 """
 for t in OWLRL_D_Axiomatic_Triples:
 self.graph.add(t)

 def restriction_typing_check(self, v, t):
 """
 Helping method to check whether a type statement is in line with a possible
 restriction. This method is invoked by rule "cls-avf" before setting a type
 on an allValuesFrom restriction.

 The method is a placeholder at this level. It is typically implemented by subclasses for
 extra checks, e.g., for datatype facet checks.

 :param v: The resource that is to be 'typed'.
 :param t: The targeted type (ie, Class).
 :return: Boolean.
 :rtype: bool
 """
 return True

 def _one_time_rules_datatypes(self):
 """
 Some of the rules in the rule set are axiomatic in nature, meaning that they really have to be added only
 once, there is no reason to add these in a cycle. These are performed by this method that is invoked only once
 at the beginning of the process.

 These are: cls-thing, cls-nothing1, prp-ap, dt-types1, dt-types2, dt-eq, dt-diff.

 .. note:: Note, however, that the dt-* are executed only partially, limited by the possibilities offered by RDFLib. These
 may not cover all the edge cases of OWL RL. Especially, dt-not-type has not (yet?) been implemented (I wonder
 whether RDFLib should not raise exception for those anyway...
 """
 # noinspection PyShadowingNames
 def _add_to_explicit(s, o):
 explicit[s].add(o)

 # noinspection PyShadowingNames
 def _append_to_explicit(s, o):
 explicit[s].add(o)

 # noinspection PyShadowingNames
 def _handle_subsumptions(r, dt):
 if dt in OWL_Datatype_Subsumptions:
 for new_dt in OWL_Datatype_Subsumptions[dt]:
 self.store_triple((r, RDF.type, new_dt))
 self.store_triple((new_dt, RDF.type, RDFS.Datatype))
 used_datatypes.add(new_dt)

 # explicit object->datatype relationships: those that came from an object being typed as a datatype
 # or a sameAs. The values are arrays of datatypes to which the resource belong
 explicit = defaultdict(set)

 # For processing later:
 # implicit object->datatype relationships: these come from real
 # literals which are present in the graph
 implicit = {
 o: o.datatype
 for s, p, o in self.graph
 if isinstance(o, rdflib.Literal) and o.datatype in OWL_RL_Datatypes
 }

 # datatypes in use by the graph (directly or indirectly). This will be used at the end to add the
 # necessary disjointness statements (but not more)
 used_datatypes = set(implicit.values())

 # RULE dt-type2: for all explicit literals the corresponding bnode should get the right type
 # definition. The 'implicit' dictionary is also filled on the fly
 # RULE dt-not-type: see whether an explicit literal is valid in terms of the defined datatype
 for lt in implicit: # note that all non-RL datatypes are ignored
 # add the explicit typing triple
 self.store_triple((lt, RDF.type, lt.datatype))

 # for dt-not-type
 # This is a dirty trick: rdflib's Literal includes a method that raises an exception if the
 # lexical value cannot be mapped on the value space.
 converter = AltXSDToPYTHON.get(lt.datatype, identity)
 try:
 converter(str(lt))
 except ValueError:
 self.add_error(
 "Lexical value of the literal '%s' does not match"
 " its datatype (%s)" % (lt, lt.datatype)
)

 # RULE dt-diff
 # RULE dt-eq
 # Compare literals whether they are different or not. This rules
 # are skipped on purpose at the moment.

 # Other datatype definitions can come from explicitly defining some nodes as datatypes (though rarely used,
 # it is perfectly possible...
 # there may be explicit relationships set in the graph, too!
 for (s, p, o) in self.graph.triples((None, RDF.type, None)):
 if o in OWL_RL_Datatypes:
 used_datatypes.add(o)
 if s not in implicit:
 _add_to_explicit(s, o)

 # Finally, there may be sameAs statements that bind nodes to some of the existing ones. This does not introduce
 # new datatypes, so the used_datatypes array does not get extended
 for (s, p, o) in self.graph.triples((None, OWL.sameAs, None)):
 if o in implicit:
 _add_to_explicit(s, implicit[o])
 # note that s in implicit would mean that the original graph has
 # a literal in subject position which is not allowed at the moment, so I do not bother
 if o in explicit:
 _append_to_explicit(s, o)
 if s in explicit:
 _append_to_explicit(o, s)

 # what we have now:
 # explicit+implicit contains all the resources of type datatype;
 # implicit contains those that are given by an explicit literal
 # explicit contains those that are given by general resources, and there can be a whole array for each entry

 # RULE dt-type1: add a Datatype typing for all those
 # Note: the strict interpretation of OWL RL is to do that for all allowed datatypes, but this is
 # under discussion right now. The optimized version uses only what is really in use
 for dt in OWL_RL_Datatypes:
 self.store_triple((dt, RDF.type, RDFS.Datatype))
 for dts in explicit.values():
 for dt in dts:
 self.store_triple((dt, RDF.type, RDFS.Datatype))

 # Datatype reasoning means that certain datatypes are subtypes of one another.
 # I could simply generate the extra subclass relationships into the graph and let the generic
 # process work its way, but it seems to be an overkill. Instead, I prefer to add the explicit typing
 # into the graph 'manually'
 for r in explicit:
 # these are the datatypes that this resource has
 dtypes = explicit[r]
 for dt in dtypes:
 _handle_subsumptions(r, dt)

 for r, dt in implicit.items():
 _handle_subsumptions(r, dt)

 # Last step: add the datatype disjointness relationships. This is done only for
 # - 'top' level datatypes
 # - used in the graph
 for t in OWLRL_Datatypes_Disjointness:
 (l, pred, r) = t
 if l in used_datatypes and r in used_datatypes:
 self.store_triple(t)

 def _one_time_rules_misc(self):
 """
 Rules executed: cls-thing, cls-nothing, prp-ap.
 """
 # RULE cls-thing
 self.store_triple((OWL.Thing, RDF.type, OWL.Class))

 # RULE cls-nothing
 self.store_triple((OWL.Nothing, RDF.type, OWL.Class))

 # RULE prp-ap
 for an in OWLRL_Annotation_properties:
 self.store_triple((an, RDF.type, OWL.AnnotationProperty))

 def one_time_rules(self):
 """
 Some of the rules in the rule set are axiomatic in nature, meaning that they really have to be added only
 once, there is no reason to add these in a cycle. These are performed by this method that is invoked only once
 at the beginning of the process.

 These are: cls-thing, cls-nothing1, prp-ap, dt-types1, dt-types2, dt-eq, dt-diff.
 """
 self._one_time_rules_misc()
 self._one_time_rules_datatypes()

 def rules(self, t, cycle_num):
 """
 Go through the various rule groups, as defined in the OWL-RL profile text and implemented via
 local methods. (The calling cycle takes every tuple in the graph.)

 :param t: A triple (in the form of a tuple).
 :param cycle_num: Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
 also used locally to collect the bnodes in the graph.
 """
 if cycle_num == 1:
 for r in t:
 if isinstance(r, BNode) and r not in self.bnodes:
 self.bnodes.append(r)

 self._properties(t, cycle_num)
 self._equality(t, cycle_num)
 self._classes(t, cycle_num)
 self._class_axioms(t, cycle_num)
 self._schema_vocabulary(t, cycle_num)

 def _property_chain(self, p, x):
 """
 Implementation of the property chain axiom, invoked from inside the property axiom handler. This is the
 implementation of rule prp-spo2, taken aside for an easier readability of the code."""
 chain = self._list(x)
 # The complication is that, at each step of the chain, there may be spawns, leading to a multitude
 # of 'sub' chains:-(
 if len(chain) > 0:
 for (u1, _y, _z) in self.graph.triples((None, chain[0], None)):
 # At least the chain can be started, because the leftmost property has at least
 # one element in its extension
 finalList = [(u1, _z)]
 chainExists = True
 for pi in chain[1:]:
 newList = []
 for (_u, ui) in finalList:
 for u in self.graph.objects(ui, pi):
 # what is stored is only last entry with u1, the intermediate results
 # are not of interest
 newList.append((u1, u))
 # I have now, in new list, all the intermediate results
 # until pi
 # if new list is empty, that means that is a blind alley
 if len(newList) == 0:
 chainExists = False
 break
 else:
 finalList = newList
 if chainExists:
 for (_u, un) in finalList:
 self.store_triple((u1, p, un))

 def _equality(self, triple, cycle_num):
 """
 Table 4: Semantics of equality. Essentially, the eq-* rules.
 @param triple: triple to work on
 @param cycle_num: which cycle are we in, starting with 1. Can be used for some optimization.
 """
 # In many of the 'if' branches, corresponding to rules in the document,
 # the branch begins by a renaming of variables (eg, pp, c = s, o).
 # There is no programming reasons for doing that, but by renaming the
 # variables it becomes easier to compare the declarative rules
 # in the document with the implementation
 s, p, o = triple
 # RULE eq-ref
 self.store_triple((s, OWL.sameAs, s))
 self.store_triple((o, OWL.sameAs, o))
 self.store_triple((p, OWL.sameAs, p))
 if p == OWL.sameAs:
 x, y = s, o
 # RULE eq-sym
 self.store_triple((y, OWL.sameAs, x))
 # RULE eq-trans
 for z in self.graph.objects(y, OWL.sameAs):
 self.store_triple((x, OWL.sameAs, z))
 # RULE eq-rep-s
 for pp, oo in self.graph.predicate_objects(s):
 self.store_triple((o, pp, oo))
 # RULE eq-rep-p
 for ss, oo in self.graph.subject_objects(s):
 self.store_triple((ss, o, oo))
 # RULE eq-rep-o
 for ss, pp in self.graph.subject_predicates(o):
 self.store_triple((ss, pp, s))
 # RULE eq-diff1
 if (s, OWL.differentFrom, o) in self.graph or (
 o,
 OWL.differentFrom,
 s,
) in self.graph:
 self.add_error(
 "'sameAs' and 'differentFrom' cannot be used on the same subject-object pair: (%s, %s)"
 % (s, o)
)

 # RULES eq-diff2 and eq-diff3
 if p == RDF.type and o == OWL.AllDifferent:
 x = s
 # the objects method are generators, we cannot simply concatenate them. So we turn the results
 # into lists first. (Otherwise the body of the for loops should be repeated verbatim, which
 # is silly and error prone...
 m1 = [i for i in self.graph.objects(x, OWL.members)]
 m2 = [i for i in self.graph.objects(x, OWL.distinctMembers)]
 for y in m1 + m2:
 zis = self._list(y)
 for i in range(0, len(zis) - 1):
 zi = zis[i]
 for j in range(i + 1, len(zis) - 1):
 zj = zis[j]
 if (
 (zi, OWL.sameAs, zj) in self.graph
 or (zj, OWL.sameAs, zi) in self.graph
) and zi != zj:
 self.add_error(
 "'sameAs' and 'AllDifferent' cannot be used on the same subject-object "
 "pair: (%s, %s)" % (zi, zj)
)

 def _properties(self, triple, cycle_num):
 """
 Table 5: The Semantics of Axioms about Properties. Essentially, the prp-* rules.
 @param triple: triple to work on
 @param cycle_num: which cycle are we in, starting with 1. Can be used for some optimization.
 """
 # In many of the 'if' branches, corresponding to rules in the document,
 # the branch begins by a renaming of variables (eg, pp, c = s, o).
 # There is no programming reasons for doing that, but by renaming the
 # variables it becomes easier to compare the declarative rules
 # in the document with the implementation
 p, t, o = triple

 # RULE prp-ap
 if cycle_num == 1 and t in OWLRL_Annotation_properties:
 self.store_triple((t, RDF.type, OWL.AnnotationProperty))

 # RULE prp-dom
 if t == RDFS.domain:
 for x, y in self.graph.subject_objects(p):
 self.store_triple((x, RDF.type, o))

 # RULE prp-rng
 elif t == RDFS.range:
 for x, y in self.graph.subject_objects(p):
 self.store_triple((y, RDF.type, o))

 elif t == RDF.type:
 # RULE prp-fp
 if o == OWL.FunctionalProperty:
 # Property axiom #3
 for x, y1 in self.graph.subject_objects(p):
 for y2 in self.graph.objects(x, p):
 # Optimization: if the two resources are identical, the samAs is already
 # taken place somewhere else, unnecessary to add it here
 if y1 != y2:
 self.store_triple((y1, OWL.sameAs, y2))

 # RULE prp-ifp
 elif o == OWL.InverseFunctionalProperty:
 for x1, y in self.graph.subject_objects(p):
 for x2 in self.graph.subjects(p, y):
 # Optimization: if the two resources are identical, the samAs is already
 # taken place somewhere else, unnecessary to add it here
 if x1 != x2:
 self.store_triple((x1, OWL.sameAs, x2))

 # RULE prp-irp
 elif o == OWL.IrreflexiveProperty:
 for x, y in self.graph.subject_objects(p):
 if x == y:
 self.add_error(
 "Irreflexive property used on %s with %s" % (x, p)
)

 # RULE prp-symp
 elif o == OWL.SymmetricProperty:
 for x, y in self.graph.subject_objects(p):
 self.store_triple((y, p, x))

 # RULE prp-asyp
 elif o == OWL.AsymmetricProperty:
 for x, y in self.graph.subject_objects(p):
 if (y, p, x) in self.graph:
 self.add_error(
 "Erroneous usage of asymmetric property %s on %s and %s"
 % (p, x, y)
)

 # RULE prp-trp
 elif o == OWL.TransitiveProperty:
 for x, y in self.graph.subject_objects(p):
 for z in self.graph.objects(y, p):
 self.store_triple((x, p, z))

 #
 # Breaking the order here, I take some additional rules here to the branch checking the type...
 #
 # RULE prp-adp
 elif o == OWL.AllDisjointProperties:
 x = p
 for y in self.graph.objects(x, OWL.members):
 pis = self._list(y)
 for i in range(0, len(pis) - 1):
 pi = pis[i]
 for j in range(i + 1, len(pis) - 1):
 pj = pis[j]
 for x, y in self.graph.subject_objects(pi):
 if (x, pj, y) in self.graph:
 self.add_error(
 "Disjoint properties in an 'AllDisjointProperties' are not really "
 "disjoint: (%s, %s,%s) and (%s,%s,%s)"
 % (x, pi, y, x, pj, y)
)

 # RULE prp-spo1
 elif t == RDFS.subPropertyOf:
 p1, p2 = p, o
 for x, y in self.graph.subject_objects(p1):
 self.store_triple((x, p2, y))

 # RULE prp-spo2
 elif t == OWL.propertyChainAxiom:
 self._property_chain(p, o)

 # RULES prp-eqp1 and prp-eqp2
 elif t == OWL.equivalentProperty:
 p1, p2 = p, o
 # Optimization: it clearly does not make sense to run these
 # if the two properties are identical (a separate axiom
 # does create an equivalent property relations among identical
 # properties, too...)
 if p1 != p2:
 # RULE prp-eqp1
 for x, y in self.graph.subject_objects(p1):
 self.store_triple((x, p2, y))
 # RULE prp-eqp2
 for x, y in self.graph.subject_objects(p2):
 self.store_triple((x, p1, y))

 # RULE prp-pdw
 elif t == OWL.propertyDisjointWith:
 p1, p2 = p, o
 for x, y in self.graph.subject_objects(p1):
 if (x, p2, y) in self.graph:
 self.add_error(
 "Erroneous usage of disjoint properties %s and %s on %s and %s"
 % (p1, p2, x, y)
)

 # RULES prp-inv1 and prp-inv2
 elif t == OWL.inverseOf:
 p1, p2 = p, o
 # RULE prp-inv1
 for x, y in self.graph.subject_objects(p1):
 self.store_triple((y, p2, x))
 # RULE prp-inv2
 for x, y in self.graph.subject_objects(p2):
 self.store_triple((y, p1, x))

 # RULE prp-key
 elif t == OWL.hasKey:
 c, u = p, o
 pis = self._list(u)
 if len(pis) > 0:
 for x in self.graph.subjects(RDF.type, c):
 # "Calculate" the keys for 'x'. The complication is that there can be various combinations
 # of the keys, and that is the structure one has to build up here...
 #
 # The final list will be a list of lists, with each constituents being the possible combinations
 # of the key values.
 # startup the list
 finalList = [[zi] for zi in self.graph.objects(x, pis[0])]
 for pi in pis[1:]:
 newList = []
 for zi in self.graph.objects(x, pi):
 newList = newList + [l + [zi] for l in finalList]
 finalList = newList

 # I am not sure this can happen, but better safe then sorry... ruling out
 # the value lists whose length are not kosher
 # (To be checked whether this is necessary in the first place)
 valueList = [l for l in finalList if len(l) == len(pis)]

 # Now we can look for the y-s, to see if they have the same key values
 for y in self.graph.subjects(RDF.type, c):
 # rule out the existing equivalences
 if not (
 y == x
 or (y, OWL.sameAs, x) in self.graph
 or (x, OWL.sameAs, y) in self.graph
):
 # 'calculate' the keys for the y values and see if there is a match
 for vals in valueList:
 same = True
 for i in range(0, len(pis) - 1):
 if (y, pis[i], vals[i]) not in self.graph:
 same = False
 # No use going with this property line
 break
 if same:
 self.store_triple((x, OWL.sameAs, y))
 # Look for the next 'y', this branch is finished, no reason to continue
 break

 # RULES prp-npa1 and prp-npa2
 elif t == OWL.sourceIndividual:
 x, i1 = p, o
 for p1 in self.graph.objects(x, OWL.assertionProperty):
 for i2 in self.graph.objects(x, OWL.targetIndividual):
 if (i1, p1, i2) in self.graph:
 self.add_error(
 "Negative (object) property assertion violated for: (%s, %s, %s)"
 % (i1, p1, i2)
)
 for i2 in self.graph.objects(x, OWL.targetValue):
 if (i1, p1, i2) in self.graph:
 self.add_error(
 "Negative (datatype) property assertion violated for: (%s, %s, %s)"
 % (i1, p1, i2)
)

 def _classes(self, triple, cycle_num):
 """
 Table 6: The Semantics of Classes. Essentially, the cls-* rules
 @param triple: triple to work on
 @param cycle_num: which cycle are we in, starting with 1. Can be used for some optimization.
 """
 # In many of the 'if' branches, corresponding to rules in the document,
 # the branch begins by a renaming of variables (eg, pp, c = s, o).
 # There is no programming reasons for doing that, but by renaming the
 # variables it becomes easier to compare the declarative rules
 # in the document with the implementation
 c, p, x = triple

 # RULE cls-nothing2
 if p == RDF.type and x == OWL.Nothing:
 self.add_error("%s is defined of type 'Nothing'" % c)

 # RULES cls-int1 and cls-int2
 if p == OWL.intersectionOf:
 classes = self._list(x)
 # RULE cls-int1
 # Optimization: by looking at the members of class[0] right away one
 # reduces the search spaces a bit. Individuals not in that class
 # are without interest anyway
 # I am not sure how empty lists are sanctioned, so having an extra check
 # on that does not hurt..
 if len(classes) > 0:
 for y in self.graph.subjects(RDF.type, classes[0]):
 if False not in [
 (y, RDF.type, cl) in self.graph for cl in classes[1:]
]:
 self.store_triple((y, RDF.type, c))
 # RULE cls-int2
 for y in self.graph.subjects(RDF.type, c):
 for cl in classes:
 self.store_triple((y, RDF.type, cl))

 # RULE cls-uni
 elif p == OWL.unionOf:
 for cl in self._list(x):
 for y in self.graph.subjects(RDF.type, cl):
 self.store_triple((y, RDF.type, c))

 # RULE cls-comm
 elif p == OWL.complementOf:
 c1, c2 = c, x
 for x1 in self.graph.subjects(RDF.type, c1):
 if (x1, RDF.type, c2) in self.graph:
 self.add_error(
 "Violation of complementarity for classes %s and %s on element %s"
 % (c1, c2, x)
)

 # RULES cls-svf1 and cls=svf2
 elif p == OWL.someValuesFrom:
 xx, y = c, x
 # RULE cls-svf1
 # RULE cls-svf2
 for pp in self.graph.objects(xx, OWL.onProperty):
 for u, v in self.graph.subject_objects(pp):
 if y == OWL.Thing or (v, RDF.type, y) in self.graph:
 self.store_triple((u, RDF.type, xx))

 # RULE cls-avf
 elif p == OWL.allValuesFrom:
 xx, y = c, x
 for pp in self.graph.objects(xx, OWL.onProperty):
 for u in self.graph.subjects(RDF.type, xx):
 for v in self.graph.objects(u, pp):
 if self.restriction_typing_check(v, y):
 self.store_triple((v, RDF.type, y))
 else:
 self.add_error(
 "Violation of type restriction for allValuesFrom in %s for datatype %s on "
 "value %s" % (pp, y, v)
)

 # RULES cls-hv1 and cls-hv2
 elif p == OWL.hasValue:
 xx, y = c, x
 for pp in self.graph.objects(xx, OWL.onProperty):
 # RULE cls-hv1
 for u in self.graph.subjects(RDF.type, xx):
 self.store_triple((u, pp, y))
 # RULE cls-hv2
 for u in self.graph.subjects(pp, y):
 self.store_triple((u, RDF.type, xx))

 # RULES cls-maxc1 and cls-maxc1
 elif p == OWL.maxCardinality:
 # This one is a bit complicated, because the literals have been
 # exchanged against bnodes...
 #
 # The construct should lead to an integer. Something may go wrong along the line
 # leading to an exception...
 xx = c
 if x.value == 0:
 # RULE cls-maxc1
 for pp in self.graph.objects(xx, OWL.onProperty):
 for u, y in self.graph.subject_objects(pp):
 # This should not occur:
 if (u, RDF.type, xx) in self.graph:
 self.add_error(
 "Erroneous usage of maximum cardinality with %s and %s"
 % (xx, y)
)
 elif x.value == 1:
 # RULE cls-maxc2
 for pp in self.graph.objects(xx, OWL.onProperty):
 for u, y1 in self.graph.subject_objects(pp):
 if (u, RDF.type, xx) in self.graph:
 for y2 in self.graph.objects(u, pp):
 if y1 != y2:
 self.store_triple((y1, OWL.sameAs, y2))

 # RULES cls-maxqc1, cls-maxqc2, cls-maxqc3, cls-maxqc4
 elif p == OWL.maxQualifiedCardinality:
 # This one is a bit complicated, because the literals have been
 # exchanged against bnodes...
 #
 # The construct should lead to an integer. Something may go wrong along the line
 # leading to an exception...
 xx = c
 if x.value == 0:
 # RULES cls-maxqc1 and cls-maxqc2 folded in one
 for pp in self.graph.objects(xx, OWL.onProperty):
 for cc in self.graph.objects(xx, OWL.onClass):
 for u, y in self.graph.subject_objects(pp):
 # This should not occur:
 if (
 (y, RDF.type, cc) in self.graph or cc == OWL.Thing
) and (u, RDF.type, xx) in self.graph:
 self.add_error(
 "Erroneous usage of maximum qualified cardinality with %s, %s and %s"
 % (xx, cc, y)
)
 elif x.value == 1:
 # RULE cls-maxqc3 and cls-maxqc4 folded in one
 for pp in self.graph.objects(xx, OWL.onProperty):
 for cc in self.graph.objects(xx, OWL.onClass):
 for u, y1 in self.graph.subject_objects(pp):
 if (u, RDF.type, xx) in self.graph:
 if cc == OWL.Thing:
 for y2 in self.graph.objects(u, pp):
 if y1 != y2:
 self.store_triple((y1, OWL.sameAs, y2))
 else:
 if (y1, RDF.type, cc) in self.graph:
 for y2 in self.graph.objects(u, pp):
 if (
 y1 != y2
 and (y2, RDF.type, cc) in self.graph
):
 self.store_triple((y1, OWL.sameAs, y2))

 # TODO: what if x.value not in (0, 1)? according to the spec
 # the cardinality shall be no more than 1, so add an # error?

 # RULE cls-oo
 elif p == OWL.oneOf:
 for y in self._list(x):
 self.store_triple((y, RDF.type, c))

 def _class_axioms(self, triple, cycle_num):
 """
 Table 7: Class Axioms. Essentially, the cax-* rules.
 @param triple: triple to work on
 @param cycle_num: which cycle are we in, starting with 1. Can be used for some optimization.
 """
 # In many of the 'if' branches, corresponding to rules in the document,
 # the branch begins by a renaming of variables (eg, pp, c = s, o).
 # There is no programming reasons for doing that, but by renaming the
 # variables it becomes easier to compare the declarative rules
 # in the document with the implementation
 c1, p, c2 = triple
 # RULE cax-sco
 if p == RDFS.subClassOf:
 # Other axioms sets classes to be subclasses of themselves, to one can optimize the trivial case
 if c1 != c2:
 for x in self.graph.subjects(RDF.type, c1):
 self.store_triple((x, RDF.type, c2))

 # RULES cax-eqc1 and cax-eqc1
 # Other axioms set classes to be equivalent to themselves, one can optimize the trivial case
 elif p == OWL.equivalentClass and c1 != c2:
 # RULE cax-eqc1
 for x in self.graph.subjects(RDF.type, c1):
 self.store_triple((x, RDF.type, c2))
 # RULE cax-eqc1
 for x in self.graph.subjects(RDF.type, c2):
 self.store_triple((x, RDF.type, c1))

 # RULE cax-dw
 elif p == OWL.disjointWith:
 for x in self.graph.subjects(RDF.type, c1):
 if (x, RDF.type, c2) in self.graph:
 self.add_error(
 "Disjoint classes %s and %s have a common individual %s"
 % (c1, c2, x)
)

 # RULE cax-adc
 elif p == RDF.type and c2 == OWL.AllDisjointClasses:
 x = c1
 for y in self.graph.objects(x, OWL.members):
 classes = self._list(y)
 if len(classes) > 0:
 for i in range(0, len(classes) - 1):
 cl1 = classes[i]
 for z in self.graph.subjects(RDF.type, cl1):
 for cl2 in classes[(i + 1) :]:
 if (z, RDF.type, cl2) in self.graph:
 self.add_error(
 "Disjoint classes %s and %s have a common individual %s"
 % (cl1, cl2, z)
)

 def _schema_vocabulary(self, triple, cycle_num):
 """
 Table 9: The Semantics of Schema Vocabulary. Essentially, the scm-* rules
 @param triple: triple to work on
 @param cycle_num: which cycle are we in, starting with 1. Can be used for some optimization.
 """
 # In many of the 'if' branches, corresponding to rules in the document,
 # the branch begins by a renaming of variables (eg, pp, c = s, o).
 # There is no programming reasons for doing that, but by renaming the
 # variables it becomes easier to compare the declarative rules
 # in the document with the implementation
 s, p, o = triple

 # RULE scm-cls
 if p == RDF.type and o == OWL.Class:
 c = s
 self.store_triple((c, RDFS.subClassOf, c))
 self.store_triple((c, OWL.equivalentClass, c))
 self.store_triple((c, RDFS.subClassOf, OWL.Thing))
 self.store_triple((OWL.Nothing, RDFS.subClassOf, c))

 # RULE scm-sco
 # Rule scm-eqc2
 elif p == RDFS.subClassOf:
 c1, c2 = s, o
 # RULE scm-sco
 # Optimize out the trivial identity case (set elsewhere already)
 if c1 != c2:
 for c3 in self.graph.objects(c2, RDFS.subClassOf):
 # Another axiom already sets that...
 if c1 != c3:
 self.store_triple((c1, RDFS.subClassOf, c3))
 # RULE scm-eqc2
 if (c2, RDFS.subClassOf, c1) in self.graph:
 self.store_triple((c1, OWL.equivalentClass, c2))

 # RULE scm-eqc
 elif p == OWL.equivalentClass and s != o:
 c1, c2 = s, o
 self.store_triple((c1, RDFS.subClassOf, c2))
 self.store_triple((c2, RDFS.subClassOf, c1))

 # RULE scm-op and RULE scm-dp folded together
 # There is a bit of a cheating here: 'Property' is not, strictly speaking, in the rule set!
 elif p == RDF.type and (
 o == OWL.ObjectProperty or o == OWL.DatatypeProperty or o == RDF.Property
):
 pp = s
 self.store_triple((pp, RDFS.subPropertyOf, pp))
 self.store_triple((pp, OWL.equivalentProperty, pp))

 # RULE scm-spo
 # RULE scm-eqp2
 elif p == RDFS.subPropertyOf and s != o:
 p1, p2 = s, o
 # Optimize out the trivial identity case (set elsewhere already)
 # RULE scm-spo
 if p1 != p2:
 for p3 in self.graph.objects(p2, RDFS.subPropertyOf):
 if p1 != p3:
 self.store_triple((p1, RDFS.subPropertyOf, p3))

 # RULE scm-eqp2
 if (p2, RDFS.subPropertyOf, p1) in self.graph:
 self.store_triple((p1, OWL.equivalentProperty, p2))

 # RULE scm-eqp
 # Optimize out the trivial identity case (set elsewhere already)
 elif p == OWL.equivalentProperty and s != o:
 p1, p2 = s, o
 self.store_triple((p1, RDFS.subPropertyOf, p2))
 self.store_triple((p2, RDFS.subPropertyOf, p1))

 # RULES scm-dom1 and scm-dom2
 elif p == RDFS.domain:
 # RULE scm-dom1
 pp, c1 = s, o
 for (_x, _y, c2) in self.graph.triples((c1, RDFS.subClassOf, None)):
 if c1 != c2:
 self.store_triple((pp, RDFS.domain, c2))
 # RULE scm-dom1
 p2, c = s, o
 for (p1, _x, _y) in self.graph.triples((None, RDFS.subPropertyOf, p2)):
 if p1 != p2:
 self.store_triple((p1, RDFS.domain, c))

 # RULES scm-rng1 and scm-rng2
 elif p == RDFS.range:
 # RULE scm-rng1
 pp, c1 = s, o
 for (_x, _y, c2) in self.graph.triples((c1, RDFS.subClassOf, None)):
 if c1 != c2:
 self.store_triple((pp, RDFS.range, c2))
 # RULE scm-rng1
 p2, c = s, o
 for (p1, _x, _y) in self.graph.triples((None, RDFS.subPropertyOf, p2)):
 if p1 != p2:
 self.store_triple((p1, RDFS.range, c))

 # RULE scm-hv
 elif p == OWL.hasValue:
 c1, i = s, o
 for p1 in self.graph.objects(c1, OWL.onProperty):
 for c2 in self.graph.subjects(OWL.hasValue, i):
 for p2 in self.graph.objects(c2, OWL.onProperty):
 if (p1, RDFS.subPropertyOf, p2) in self.graph:
 self.store_triple((c1, RDFS.subClassOf, c2))

 # RULES scm-svf1 and scm-svf2
 elif p == OWL.someValuesFrom:
 # RULE scm-svf1
 c1, y1 = s, o
 for pp in self.graph.objects(c1, OWL.onProperty):
 for c2 in self.graph.subjects(OWL.onProperty, pp):
 for y2 in self.graph.objects(c2, OWL.someValuesFrom):
 if (y1, RDFS.subClassOf, y2) in self.graph:
 self.store_triple((c1, RDFS.subClassOf, c2))

 # RULE scm-svf2
 c1, y = s, o
 for p1 in self.graph.objects(c1, OWL.onProperty):
 for c2 in self.graph.subjects(OWL.someValuesFrom, y):
 for p2 in self.graph.objects(c2, OWL.onProperty):
 if (p1, RDFS.subPropertyOf, p2) in self.graph:
 self.store_triple((c1, RDFS.subClassOf, c2))

 # RULES scm-avf1 and scm-avf2
 elif p == OWL.allValuesFrom:
 # RULE scm-avf1
 c1, y1 = s, o
 for pp in self.graph.objects(c1, OWL.onProperty):
 for c2 in self.graph.subjects(OWL.onProperty, pp):
 for y2 in self.graph.objects(c2, OWL.allValuesFrom):
 if (y1, RDFS.subClassOf, y2) in self.graph:
 self.store_triple((c1, RDFS.subClassOf, c2))

 # RULE scm-avf2
 c1, y = s, o
 for p1 in self.graph.objects(c1, OWL.onProperty):
 for c2 in self.graph.subjects(OWL.allValuesFrom, y):
 for p2 in self.graph.objects(c2, OWL.onProperty):
 if (p1, RDFS.subPropertyOf, p2) in self.graph:
 self.store_triple((c2, RDFS.subClassOf, c1))

 # RULE scm-int
 elif p == OWL.intersectionOf:
 c, x = s, o
 for ci in self._list(x):
 self.store_triple((c, RDFS.subClassOf, ci))

 # RULE scm-uni
 elif p == OWL.unionOf:
 c, x = s, o
 for ci in self._list(x):
 self.store_triple((ci, RDFS.subClassOf, c))

 Source code for owlrl.OWLRLExtras

-*- coding: utf-8 -*-
#
"""

Extension to OWL 2 RL, ie, some additional rules added to the system from OWL 2 Full. It is implemented through
the :class:`.OWLRL_Extension` class, whose reference has to be passed to the relevant semantic class (i.e., either the OWL 2 RL
or the combined closure class) as an 'extension'.

The added rules and features are:

 - self restriction
 - owl:rational datatype
 - datatype restrictions via facets

In more details, the rules that are added:

 1. self restriction 1: :code:`?z owl:hasSelf ?x. ?x owl:onProperty ?p. ?y rdf:type ?z. => ?y ?p ?y.`
 2. self restriction 2: :code:`?z owl:hasSelf ?x. ?x owl:onProperty ?p. ?y ?p ?y. => ?y rdf:type ?z.`

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

import rdflib
from rdflib.namespace import RDF, RDFS, OWL, XSD

from fractions import Fraction as Rational

from .DatatypeHandling import AltXSDToPYTHON

noinspection PyPep8Naming
from .CombinedClosure import RDFS_OWLRL_Semantics
from .OWLRL import OWLRL_Annotation_properties

from .XsdDatatypes import OWL_RL_Datatypes, OWL_Datatype_Subsumptions

from .RestrictedDatatype import extract_faceted_datatypes

###
Rational datatype

noinspection PyPep8Naming
def _strToRational(v):
 """Converting a string to a rational.

 According to the OWL spec: numerator must be an integer, denominator a positive integer (ie, xsd['integer'] type),
 and the denominator should not have a '+' sign.

 @param v: the literal string defined as boolean
 @return corresponding Rational value
 @rtype: Rational
 @raise ValueError: invalid rational string literal
 """
 try:
 r = v.split("/")
 if len(r) == 2:
 n_str = r[0]
 d_str = r[1]
 else:
 n_str = r[0]
 d_str = "1"
 if d_str.strip()[0] == "+":
 raise ValueError("Invalid Rational literal value %s" % v)
 else:
 return Rational(
 AltXSDToPYTHON[XSD.integer](n_str),
 AltXSDToPYTHON[XSD.positiveInteger](d_str),
)
 except:
 raise ValueError("Invalid Rational literal value %s" % v)

###

noinspection PyPep8Naming,PyBroadException
[docs]class OWLRL_Extension(RDFS_OWLRL_Semantics):
 """
 Additional rules to OWL 2 RL. The initialization method also adds the :code:`owl:rational` datatype to the set of
 allowed datatypes with the :py:func:`._strToRational` function as a conversion between the literal form and a Rational. The
 :code:`xsd:decimal` datatype is also set to be a subclass of :code:`owl:rational`. Furthermore, the restricted datatypes are
 extracted from the graph using a separate method in a different module
 (:py:func:`.RestrictedDatatype.extract_faceted_datatypes`), and all those datatypes are also added to the set of allowed
 datatypes. In the case of the restricted datatypes and extra subsumption relationship is set up between the
 restricted and the base datatypes.

 :cvar extra_axioms: Additional axioms that have to be added to the deductive closure (in case the axiomatic triples
 are required).

 :var restricted_datatypes: list of the datatype restriction from :class:`.RestrictedDatatype`.
 :type restricted_datatypes: list of L{restricted datatype<RestrictedDatatype.RestrictedDatatype>} instances
 """

 extra_axioms = [
 (OWL.hasSelf, RDF.type, RDF.Property),
 (OWL.hasSelf, RDFS.domain, RDF.Property),
]

 def __init__(self, graph, axioms, daxioms, rdfs=False):
 """
 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether (non-datatype) axiomatic triples should be added or not
 @type axioms: Boolean
 @param daxioms: whether datatype axiomatic triples should be added or not
 @type daxioms: Boolean
 @param rdfs: whether RDFS extension is done
 @type rdfs: boolean
 """
 RDFS_OWLRL_Semantics.__init__(self, graph, axioms, daxioms, rdfs)
 self.rdfs = rdfs
 self.add_new_datatype(
 OWL.rational,
 _strToRational,
 OWL_RL_Datatypes,
 subsumption_dict=OWL_Datatype_Subsumptions,
 subsumption_key=XSD.decimal,
 subsumption_list=[OWL.rational],
)

 self.restricted_datatypes = extract_faceted_datatypes(self, graph)
 for dt in self.restricted_datatypes:
 self.add_new_datatype(
 dt.datatype,
 dt.toPython,
 OWL_RL_Datatypes,
 subsumption_dict=OWL_Datatype_Subsumptions,
 subsumption_key=dt.datatype,
 subsumption_list=[dt.base_type],
)

 # noinspection PyShadowingNames
 def _subsume_restricted_datatypes(self):
 """
 A one-time-rule: all the literals are checked whether they are (a) of type restricted by a
 faceted (restricted) datatype and (b) whether
 the corresponding value abides to the restrictions. If true, then the literal gets an extra
 tag as being of type of the restricted datatype, too.
 """
 literals = self._literals()
 for rt in self.restricted_datatypes:
 # This is a recorded restriction. The base type is:
 base_type = rt.base_type
 # Look through all the literals
 for lt in literals:
 # check if the type of that literal matches. Note that this also takes
 # into account the subsumption datatypes, that have been taken
 # care of by the 'regular' OWL RL process
 if (lt, RDF.type, base_type) in self.graph:
 try:
 # the conversion or the check may go wrong and raise an exception; then simply move on
 if rt.checkValue(lt.toPython()):
 # yep, this is also of type 'rt'
 self.store_triple((lt, RDF.type, rt.datatype))
 except:
 continue

[docs] def restriction_typing_check(self, v, t):
 """
 Helping method to check whether a type statement is in line with a possible
 restriction. This method is invoked by rule "cls-avf" before setting a type
 on an allValuesFrom restriction.

 The method is a placeholder at this level. It is typically implemented by subclasses for
 extra checks, e.g., for datatype facet checks.

 :param v: the resource that is to be 'typed'.
 :param t: the targeted type (i.e., Class).
 :return: Boolean.
 :rtype: bool
 """
 # Look through the restricted datatypes to see if 't' corresponds to one of those...
 # There are a bunch of possible exceptions here with datatypes, but they can all
 # be ignored...
 try:
 for rt in self.restricted_datatypes:
 if rt.datatype == t:
 # bingo
 if v in self.literal_proxies.bnode_to_lit:
 return rt.checkValue(
 self.literal_proxies.bnode_to_lit[v].lit.toPython()
)
 else:
 return True
 # if we got here, no restriction applies
 return True
 except:
 return True

[docs] def one_time_rules(self):
 """
 This method is invoked only once at the beginning, and prior of, the forward chaining process.

 At present, only the L{subsumption} of restricted datatypes<_subsume_restricted_datatypes>} is performed.
 """
 RDFS_OWLRL_Semantics.one_time_rules(self)
 # it is important to flush the triples at this point, because
 # the handling of the restriction datatypes rely on the datatype
 # subsumption triples added by the superclass
 self.flush_stored_triples()
 self._subsume_restricted_datatypes()

[docs] def add_axioms(self):
 """
 Add the :class:`.OWLRL_Extension.extra_axioms`, related to the self restrictions.
 """
 RDFS_OWLRL_Semantics.add_axioms(self)
 for t in self.extra_axioms:
 self.graph.add(t)

[docs] def rules(self, t, cycle_num):
 """
 Go through the additional rules implemented by this module.

 :param t: A triple (in the form of a tuple).
 :type t: tuple

 :param cycle_num: Which cycle are we in, starting with 1. This value is forwarded to all local rules; it is
 also used locally to collect the bnodes in the graph.
 :type cycle_num: int
 """
 RDFS_OWLRL_Semantics.rules(self, t, cycle_num)
 z, q, x = t
 if q == OWL.hasSelf:
 for p in self.graph.objects(z, OWL.onProperty):
 for y in self.graph.subjects(RDF.type, z):
 self.store_triple((y, p, y))
 for y1, y2 in self.graph.subject_objects(p):
 if y1 == y2:
 self.store_triple((y1, RDF.type, z))

noinspection PyPep8Naming
[docs]class OWLRL_Extension_Trimming(OWLRL_Extension):
 """
 This Class adds only one feature to :class:`.OWLRL_Extension`: to initialize with a trimming flag set to :code:`True` by
 default.

 This is pretty experimental and probably contentious: this class *removes* a number of triples from the Graph at
 the very end of the processing steps. These triples are either the by-products of the deductive closure calculation
 or are axiom like triples that are added following the rules of OWL 2 RL. While these triples *are necessary* for
 the correct inference of really 'useful' triples, they may not be of interest for the application for the end
 result. The triples that are removed are of the form (following a SPARQL-like notation):

 - :code:`?x owl:sameAs ?x`, :code:`?x rdfs:subClassOf ?x`, :code:`?x rdfs:subPropertyOf ?x`, :code:`?x owl:equivalentClass ?x` type triples.

 - :code:`?x rdfs:subClassOf rdf:Resource`, :code:`?x rdfs:subClassOf owl:Thing`, :code:`?x rdf:type rdf:Resource`, :code:`owl:Nothing rdfs:subClassOf ?x` type triples.

 - For a datatype that does *not* appear explicitly in a type assignments (ie, in a :code:`?x rdf:type dt`) the corresponding :code:`dt rdf:type owl:Datatype` and :code:`dt rdf:type owl:DataRange` triples, as well as the disjointness statements with other datatypes.
 - annotation property axioms.
 - a number of axiomatic triples on :code:`owl:Thing`, :code:`owl:Nothing` and :code:`rdf:Resource` (eg, :code:`owl:Nothing rdf:type owl:Class`, :code:`owl:Thing owl:equivalentClass rdf:Resource`, etc).

 Trimming is the only feature of this class, done in the :py:meth:`.post_process` step. If users extend :class:`OWLRL_Extension`,
 this class can be safely mixed in via multiple inheritance.

 :param graph: The RDF graph to be extended.
 :type graph: :class:`rdflib.Graph`

 :param axioms: Whether (non-datatype) axiomatic triples should be added or not.
 :type axioms: bool

 :param daxioms: Whether datatype axiomatic triples should be added or not.
 :type daxioms: bool

 :param rdfs: Whether RDFS extension is done.
 :type rdfs: bool
 """

 def __init__(self, graph, axioms, daxioms, rdfs=False):
 """
 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether (non-datatype) axiomatic triples should be added or not
 @type axioms: Boolean
 @param daxioms: whether datatype axiomatic triples should be added or not
 @type daxioms: Boolean
 @param rdfs: whether RDFS extension is done
 @type rdfs: boolean
 """
 OWLRL_Extension.__init__(self, graph, axioms, daxioms, rdfs=False)

[docs] def post_process(self):
 """
 Do some post-processing step performing the trimming of the graph. See the :class:`.OWLRL_Extension_Trimming`
 class for further details.
 """
 OWLRL_Extension.post_process(self)
 self.flush_stored_triples()

 to_be_removed = set()
 for t in self.graph:
 s, p, o = t
 if s == o:
 if (
 p == OWL.sameAs
 or p == OWL.equivalentClass
 or p == RDFS.subClassOf
 or p == RDFS.subPropertyOf
):
 to_be_removed.add(t)
 if (
 (p == RDFS.subClassOf and (o == OWL.Thing or o == RDFS.Resource))
 or (p == RDF.type and o == RDFS.Resource)
 or (s == OWL.Nothing and p == RDFS.subClassOf)
):
 to_be_removed.add(t)

 for dt in OWL_RL_Datatypes:
 # see if this datatype appears explicitly in the graph as the type of a symbol
 if len([s for s in self.graph.subjects(RDF.type, dt)]) == 0:
 to_be_removed.add((dt, RDF.type, RDFS.Datatype))
 to_be_removed.add((dt, RDF.type, OWL.DataRange))

 for t in self.graph.triples((dt, OWL.disjointWith, None)):
 to_be_removed.add(t)
 for t in self.graph.triples((None, OWL.disjointWith, dt)):
 to_be_removed.add(t)

 for an in OWLRL_Annotation_properties:
 self.graph.remove((an, RDF.type, OWL.AnnotationProperty))

 to_be_removed.add((OWL.Nothing, RDF.type, OWL.Class))
 to_be_removed.add((OWL.Nothing, RDF.type, RDFS.Class))
 to_be_removed.add((OWL.Thing, RDF.type, OWL.Class))
 to_be_removed.add((OWL.Thing, RDF.type, RDFS.Class))
 to_be_removed.add((OWL.Thing, OWL.equivalentClass, RDFS.Resource))
 to_be_removed.add((RDFS.Resource, OWL.equivalentClass, OWL.Thing))
 to_be_removed.add((OWL.Class, OWL.equivalentClass, RDFS.Class))
 to_be_removed.add((OWL.Class, RDFS.subClassOf, RDFS.Class))
 to_be_removed.add((RDFS.Class, OWL.equivalentClass, OWL.Class))
 to_be_removed.add((RDFS.Class, RDFS.subClassOf, OWL.Class))
 to_be_removed.add((RDFS.Datatype, RDFS.subClassOf, OWL.DataRange))
 to_be_removed.add((RDFS.Datatype, OWL.equivalentClass, OWL.DataRange))
 to_be_removed.add((OWL.DataRange, RDFS.subClassOf, OWL.Datatype))
 to_be_removed.add((OWL.DataRange, OWL.equivalentClass, OWL.Datatype))

 for t in to_be_removed:
 self.graph.remove(t)

 Source code for owlrl.RDFSClosure

-*- coding: utf-8 -*-
#
"""
This module is brute force implementation of the RDFS semantics on the top of RDFLib (with some caveats, see in the
introductory text).

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""

__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

import rdflib
from rdflib import Literal
from rdflib.namespace import RDF, RDFS
from itertools import product
from owlrl.Closure import Core
from owlrl.AxiomaticTriples import RDFS_Axiomatic_Triples, RDFS_D_Axiomatic_Triples

##

RDFS Semantics class
noinspection PyPep8Naming
[docs]class RDFS_Semantics(Core):
 """
 RDFS Semantics class, ie, implementation of the RDFS closure graph.

 .. note:: Note that the module does *not* implement the so called Datatype entailment rules, simply because the
 underlying RDFLib does not implement the datatypes (ie, RDFLib will not make the literal "1.00" and "1.00000"
 identical, although even with all the ambiguities on datatypes, this I{should} be made equal...).

 Also, the so-called extensional entailment rules (Section 7.3.1 in the RDF Semantics document) have not been
 implemented either.

 The comments and references to the various rule follow the names as used in the `RDF Semantics document`_.

 .. _RDF Semantics document: http://www.w3.org/TR/rdf-mt/

 :param graph: The RDF graph to be extended.
 :type graph: :class:`rdflib.Graph`

 :param axioms: Whether (non-datatype) axiomatic triples should be added or not.
 :type axioms: bool

 :param daxioms: Whether datatype axiomatic triples should be added or not.
 :type daxioms: bool

 :param rdfs: Whether RDFS inference is also done (used in subclassed only).
 :type rdfs: bool
 """

 def __init__(self, graph, axioms, daxioms, rdfs):
 """
 @param graph: the RDF graph to be extended
 @type graph: rdflib.Graph
 @param axioms: whether (non-datatype) axiomatic triples should be added or not
 @type axioms: bool
 @param daxioms: whether datatype axiomatic triples should be added or not
 @type daxioms: bool
 @param rdfs: whether RDFS inference is also done (used in subclassed only)
 @type rdfs: boolean
 """
 Core.__init__(self, graph, axioms, daxioms, rdfs)

[docs] def add_axioms(self):
 """
 Add axioms
 """
 for t in RDFS_Axiomatic_Triples:
 self.graph.add(t)
 for i in range(1, self.IMaxNum + 1):
 ci = RDF[("_%d" % i)]
 self.graph.add((ci, RDF.type, RDF.Property))
 self.graph.add((ci, RDFS.domain, RDFS.Resource))
 self.graph.add((ci, RDFS.range, RDFS.Resource))
 self.graph.add((ci, RDF.type, RDFS.ContainerMembershipProperty))

[docs] def add_d_axioms(self):
 """
 This is not really complete, because it just uses the comparison possibilities that RDFLib provides.
 """
 # #1
 literals = (lt for lt in self._literals() if lt.datatype is not None)
 for lt in literals:
 self.graph.add((lt, RDF.type, lt.datatype))

 for t in RDFS_D_Axiomatic_Triples:
 self.graph.add(t)

 # noinspection PyBroadException
[docs] def one_time_rules(self):
 """
 Some of the rules in the rule set are axiomatic in nature, meaning that they really have to be added only
 once, there is no reason to add these in a cycle. These are performed by this method that is invoked only once
 at the beginning of the process.

 In this case this is related to a 'hidden' same as rules on literals with identical values (though different
 lexical values).
 """
 # There is also a hidden sameAs rule in RDF Semantics: if a literal appears in a triple, and another one has
 # the same value, then the triple should be duplicated with the other value.
 literals = self._literals()
 items = (
 (lt1, lt2)
 for lt1, lt2 in product(literals, literals)
 if lt1.value == lt2.value
)
 for lt1, lt2 in items:
 # In OWL, this line is simply stating a sameAs for the
 # corresponding literals, and then let the usual rules take
 # effect. In RDFS this is not possible, so the sameAs rule is,
 # essentially replicated...
 for (s, p, o) in self.graph.triples((None, None, lt1)):
 self.graph.add((s, p, lt2))

[docs] def rules(self, t, cycle_num):
 """
 Go through the RDFS entailment rules rdf1, rdfs4-rdfs12, by extending the graph.

 :param t: A triple (in the form of a tuple).
 :type t: tuple

 :param cycle_num: Which cycle are we in, starting with 1. Can be used for some (though minor) optimization.
 :type cycle_num: int
 """
 s, p, o = t
 # rdf1
 self.store_triple((p, RDF.type, RDF.Property))
 # rdfs4a
 if cycle_num == 1:
 self.store_triple((s, RDF.type, RDFS.Resource))
 # rdfs4b
 if cycle_num == 1:
 self.store_triple((o, RDF.type, RDFS.Resource))
 if p == RDFS.domain:
 # rdfs2
 for uuu, Y, yyy in self.graph.triples((None, s, None)):
 self.store_triple((uuu, RDF.type, o))
 if p == RDFS.range:
 # rdfs3
 for uuu, Y, vvv in self.graph.triples((None, s, None)):
 self.store_triple((vvv, RDF.type, o))
 if p == RDFS.subPropertyOf:
 # rdfs5
 for Z, Y, xxx in self.graph.triples((o, RDFS.subPropertyOf, None)):
 self.store_triple((s, RDFS.subPropertyOf, xxx))
 # rdfs7
 for zzz, Z, www in self.graph.triples((None, s, None)):
 self.store_triple((zzz, o, www))
 if p == RDF.type and o == RDF.Property:
 # rdfs6
 self.store_triple((s, RDFS.subPropertyOf, s))
 if p == RDF.type and o == RDFS.Class:
 # rdfs8
 self.store_triple((s, RDFS.subClassOf, RDFS.Resource))
 # rdfs10
 self.store_triple((s, RDFS.subClassOf, s))
 if p == RDFS.subClassOf:
 # rdfs9
 for vvv, Y, Z in self.graph.triples((None, RDF.type, s)):
 self.store_triple((vvv, RDF.type, o))
 # rdfs11
 for Z, Y, xxx in self.graph.triples((o, RDFS.subClassOf, None)):
 self.store_triple((s, RDFS.subClassOf, xxx))
 if p == RDF.type and o == RDFS.ContainerMembershipProperty:
 # rdfs12
 self.store_triple((s, RDFS.subPropertyOf, RDFS.member))
 if p == RDF.type and o == RDFS.Datatype:
 self.store_triple((s, RDFS.subClassOf, RDFS.Literal))

 def _literals(self):
 """
 Get all literals defined in the graph.
 """
 return set(o for s, p, o in self.graph if isinstance(o, Literal))

 Source code for owlrl.RestrictedDatatype

-*- coding: utf-8 -*-
#
"""
Module to datatype restrictions, i.e., data ranges.

The module implements the following aspects of datatype restrictions:

 - a new datatype is created run-time and added to the allowed and accepted datatypes; literals are checked whether they abide to the restrictions
 - the new datatype is defined to be a 'subClass' of the restricted datatype
 - literals of the restricted datatype and that abide to the restrictions defined by the facets are also assigned to be of the new type

The last item is important to handle the following structures::

 ex:RE a owl:Restriction ;
 owl:onProperty ex:p ;
 owl:someValuesFrom [
 a rdfs:Datatype ;
 owl:onDatatype xsd:string ;
 owl:withRestrictions (
 [xsd:minLength "3"^^xsd:integer]
 [xsd:maxLength "6"^^xsd:integer]
)
]
 .
 ex:q ex:p "abcd"^^xsd:string.

In the case above the system can then infer that :code:`ex:q` is also of type :code:`ex:RE`.

Datatype restrictions are used by the :class:`.OWLRLExtras.OWLRL_Extension` extension class.

The implementation is **not** 100% complete. Some things that an ideal implementation should do are not done yet like:

 - checking whether a facet is of a datatype that is allowed for that facet
 - handling of non-literals in the facets (ie, if the resource is defined to be of type literal, but whose value is defined via a separate :code:`owl:sameAs` somewhere else)

Requires: `RDFLib`_, 4.0.0 and higher.

.. _RDFLib: https://github.com/RDFLib/rdflib

License: This software is available for use under the `W3C Software License`_.

.. _W3C Software License: http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231

Organization: `World Wide Web Consortium`_

.. _World Wide Web Consortium: http://www.w3.org

Author: `Ivan Herman`_

.. _Ivan Herman: http://www.w3.org/People/Ivan/

"""
__author__ = "Ivan Herman"
__contact__ = "Ivan Herman, ivan@w3.org"
__license__ = "W3C® SOFTWARE NOTICE AND LICENSE, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231"

import re

from rdflib.namespace import OWL, RDF, RDFS, XSD
from rdflib import Literal as rdflibLiteral

from .DatatypeHandling import AltXSDToPYTHON
from functools import reduce

Constant for datatypes using min, max (inclusive and exclusive):
MIN_MAX = 0
Constant for datatypes using length, minLength, and maxLength (and nothing else)
LENGTH = 1
Constant for datatypes using length, minLength, maxLength, and pattern
LENGTH_AND_PATTERN = 2
Constant for datatypes using length, minLength, maxLength, pattern, and lang range
LENGTH_PATTERN_LRANGE = 3

Dictionary of all the datatypes, keyed by category
Datatypes_per_facets = {
 MIN_MAX: [
 # OWL.rational,
 # OWL.real,
 XSD.decimal,
 XSD.integer,
 XSD.nonNegativeInteger,
 XSD.nonPositiveInteger,
 XSD.positiveInteger,
 XSD.negativeInteger,
 XSD.long,
 XSD.short,
 XSD.byte,
 XSD.unsignedLong,
 XSD.unsignedInt,
 XSD.unsignedShort,
 XSD.unsignedByte,
 XSD.double,
 XSD.float,
 XSD.dateTime,
 XSD.dateTimeStamp,
 XSD.time,
 XSD.date,
],
 LENGTH: [XSD.hexBinary, XSD.base64Binary],
 LENGTH_AND_PATTERN: [
 XSD.anyURI,
 XSD.string,
 XSD.NMTOKEN,
 XSD.Name,
 XSD.NCName,
 XSD.language,
 XSD.normalizedString,
],
 LENGTH_PATTERN_LRANGE: [RDF.PlainLiteral],
}

a simple list containing C{all} datatypes that may have a facet
facetable_datatypes = reduce(lambda x, y: x + y, list(Datatypes_per_facets.values()))

###

[docs]def _lit_to_value(dt, v):
 """
 This method is used to convert a string to a value with facet checking. RDF Literals are converted to
 Python values using this method; if there is a problem, an exception is raised (and caught higher
 up to generate an error message).

 The method is the equivalent of all the methods in the :mod:`.DatatypeHandling` module, and is registered
 to the system run time, as new restricted datatypes are discovered.

 (Technically, the registration is done via a :code:`lambda v: _lit_to_value(self,v)` setting from within a
 :class:`.RestrictedDatatype` instance).

 :param dt: Faceted datatype.
 :type dt: :class:`RestrictedDatatype`

 :param v: Literal to be converted and checked.

 :raise ValueError: Invalid literal value.
 """
 # This may raise an exception...
 value = dt.converter(v)

 # look at the different facet categories and try to find which is
 # is, if any, the one that is of relevant for this literal
 for cat in Datatypes_per_facets:
 if dt.base_type in Datatypes_per_facets[cat]:
 # yep, this is to be checked.
 if not dt.checkValue(value):
 raise ValueError(
 "Literal value %s does not fit the faceted datatype %s" % (v, dt)
)
 # got here, everything should be fine
 return value

noinspection PyPep8Naming,PyShadowingBuiltins
def _lang_range_check(range, lang):
 """
 Implementation of the extended filtering algorithm, as defined in point 3.3.2,
 of U{RFC 4647<http://www.rfc-editor.org/rfc/rfc4647.txt>}, on matching language ranges and language tags.
 Needed to handle the C{rdf:PlainLiteral} datatype.
 @param range: language range
 @param lang: language tag
 @rtype: boolean
 """

 def _match(r, l):
 """Matching of a range and language item: either range is a wildcard or the two are equal
 @param r: language range item
 @param l: language tag item
 @rtype: boolean
 """
 return r == "*" or r == l

 rangeList = range.strip().lower().split("-")
 langList = lang.strip().lower().split("-")
 if not _match(rangeList[0], langList[0]):
 return False

 rI = 1
 rL = 1
 while rI < len(rangeList):
 if rangeList[rI] == "*":
 rI += 1
 continue
 if rL >= len(langList):
 return False
 if _match(rangeList[rI], langList[rL]):
 rI += 1
 rL += 1
 continue
 if len(langList[rL]) == 1:
 return False
 else:
 rL += 1
 continue
 return True

###

[docs]def extract_faceted_datatypes(core, graph):
 """
 Extractions of restricted (i.e., faceted) datatypes from the graph.

 :param core: The core closure instance that is being handled.
 :type core: :class:`.Closure.Core`

 :param graph: RDFLib graph.
 :type graph: :class:`RDFLib.Graph`

 :return: List of :class:`.RestrictedDatatype` instances.
 :rtype: list
 """
 retval = []
 for dtype in graph.subjects(RDF.type, RDFS.Datatype):
 base_type = None
 facets = []
 try:
 base_types = [x for x in graph.objects(dtype, OWL.onDatatype)]
 if len(base_types) > 0:
 if len(base_types) > 1:
 raise Exception(
 "Several base datatype for the same restriction %s" % dtype
)
 else:
 base_type = base_types[0]
 if base_type in facetable_datatypes:
 rlists = [x for x in graph.objects(dtype, OWL.withRestrictions)]
 if len(rlists) > 1:
 raise Exception(
 "More than one facet lists for the same restriction %s"
 % dtype
)
 elif len(rlists) > 0:
 final_facets = []
 for r in graph.items(rlists[0]):
 for (facet, lit) in graph.predicate_objects(r):
 if isinstance(lit, rdflibLiteral):
 # the python value of the literal should be extracted
 # note that this call may lead to an exception, but that is fine,
 # it is caught some lines below anyway...
 try:
 if (
 lit.datatype is None
 or lit.datatype == XSD.string
):
 final_facets.append((facet, str(lit)))
 else:
 final_facets.append(
 (
 facet,
 AltXSDToPYTHON[lit.datatype](
 str(lit)
),
)
)
 except Exception as msg:
 core.add_error(msg)
 continue
 # We do have everything we need:
 new_datatype = RestrictedDatatype(
 dtype, base_type, final_facets
)
 retval.append(new_datatype)
 except Exception as msg:
 # import sys
 # print sys.exc_info()
 # print sys.exc_type
 # print sys.exc_value
 # print sys.exc_traceback
 core.add_error(msg)
 continue
 return retval

noinspection PyPep8Naming
[docs]class RestrictedDatatypeCore:
 """
 An 'abstract' superclass for datatype restrictions. The instance variables listed here are
 used in general, without the specificities of the concrete restricted datatype.

 This module defines the :class:`.RestrictedDatatype` class that corresponds to the datatypes and their restrictions
 defined in the OWL 2 standard. Other modules may subclass this class to define new datatypes with restrictions.

 :ivar type_uri: The URI for this datatype.

 :ivar base_type: URI of the datatype that is restricted.

 :ivar toPython: Function to convert a Literal of the specified type to a Python value.
 """

 def __init__(self, type_uri, base_type):
 self.datatype = type_uri
 self.base_type = base_type
 self.toPython = None

[docs] def checkValue(self, value):
 """
 Check whether the (Python) value abides to the constraints defined by the current facets.

 :param value: The value to be checked.
 :rtype: bool
 """
 raise Exception(
 "This class should not be used by itself, only via its subclasses!"
)

noinspection PyPep8Naming
[docs]class RestrictedDatatype(RestrictedDatatypeCore):
 """
 Implementation of a datatype with facets, ie, datatype with restrictions.

 :param type_uri: URI of the datatype being defined.
 :param base_type: URI of the base datatype, ie, the one being restricted.
 :param facets: List of :code:`(facetURI, value)` pairs.

 :ivar datatype : The URI for this datatype.

 :ivar base_type: URI of the datatype that is restricted.

 :ivar converter: Method to convert a literal of the base type to a Python value (:code:`DatatypeHandling.AltXSDToPYTHON`).

 :ivar minExclusive: Value for the :code`xsd:minExclusive` facet, initialized to :code:`None` and set to the right value if
 a facet is around.
 :ivar minInclusive: Value for the :code:`xsd:minInclusive` facet, initialized to :code:`None` and set to the right value if
 a facet is around.
 :ivar maxExclusive: Value for the :code:`xsd:maxExclusive` facet, initialized to :code:`None` and set to the right value if
 a facet is around.
 :ivar maxInclusive: Value for the :code:`xsd:maxInclusive` facet, initialized to :code:`None` and set to the right value if
 a facet is around.
 :ivar minLength: Value for the :code:`xsd:minLength` facet, initialized to :code:`None` and set to the right value if a facet
 is around.
 :ivar maxLength: Value for the :code:`xsd:maxLength` facet, initialized to :code:`None` and set to the right value if a facet
 is around.
 :ivar length: Value for the :code:`xsd:length` facet, initialized to :code:`None` and set to the right value if a facet is
 around.
 :ivar pattern: Array of patterns for the :code:`xsd:pattern` facet, initialized to :code:`[]` and set to the right value if a
 facet is around.
 :ivar langRange: Array of language ranges for the :code:`rdf:langRange` facet, initialized to :code:`[]` and set to the right
 value if a facet is around.
 :ivar check_methods: List of class methods that are relevant for the given :code:`base_type`.

 :ivar toPython: Function to convert a Literal of the specified type to a Python value. Is defined by :code:`lambda v:
 _lit_to_value(self, v)`, see :py:func:`._lit_to_value`.
 """

 def __init__(self, type_uri, base_type, facets):
 """
 @param type_uri: URI of the datatype being defined
 @param base_type: URI of the base datatype, ie, the one being restricted
 @param facets: array of C{(facetURI, value)} pairs
 """
 RestrictedDatatypeCore.__init__(self, type_uri, base_type)
 if self.base_type not in AltXSDToPYTHON:
 raise Exception("No facet is implemented for datatype %s" % self.base_type)
 self.converter = AltXSDToPYTHON[self.base_type]

 self.minExclusive = None
 self.maxExclusive = None
 self.minInclusive = None
 self.maxInclusive = None
 self.length = None
 self.maxLength = None
 self.minLength = None
 self.pattern = []
 self.langRange = []
 for (facet, value) in facets:
 if facet == XSD.minInclusive and (
 self.minInclusive is None or self.minInclusive < value
):
 self.minInclusive = value
 elif facet == XSD.minExclusive and (
 self.minExclusive is None or self.minExclusive < value
):
 self.minExclusive = value
 elif facet == XSD.maxInclusive and (
 self.maxInclusive is None or value < self.maxInclusive
):
 self.maxInclusive = value
 elif facet == XSD.maxExclusive and (
 self.maxExclusive is None or value < self.maxExclusive
):
 self.maxExclusive = value
 elif facet == RDF.langRange:
 self.langRange.append(value)
 elif facet == XSD.length:
 self.length = value
 elif facet == XSD.maxLength and (
 self.maxLength is None or value < self.maxLength
):
 self.maxLength = value
 elif facet == XSD.minLength and (
 self.minLength is None or value > self.minLength
):
 self.minLength = value
 elif facet == XSD.pattern:
 self.pattern.append(re.compile(value))

 # Choose the methods that are relevant for this datatype, based on the base type
 facet_to_method = {
 MIN_MAX: [
 RestrictedDatatype._check_max_exclusive,
 RestrictedDatatype._check_min_exclusive,
 RestrictedDatatype._check_max_inclusive,
 RestrictedDatatype._check_min_inclusive,
],
 LENGTH: [
 RestrictedDatatype._check_min_length,
 RestrictedDatatype._check_max_length,
 RestrictedDatatype._check_length,
],
 LENGTH_AND_PATTERN: [
 RestrictedDatatype._check_min_length,
 RestrictedDatatype._check_max_length,
 RestrictedDatatype._check_length,
 RestrictedDatatype._check_pattern,
],
 LENGTH_PATTERN_LRANGE: [
 RestrictedDatatype._check_min_length,
 RestrictedDatatype._check_max_length,
 RestrictedDatatype._check_length,
 RestrictedDatatype._check_lang_range,
],
 }
 self.check_methods = []
 for cat in Datatypes_per_facets:
 if self.base_type in Datatypes_per_facets[cat]:
 self.check_methods = facet_to_method[cat]
 break
 self.toPython = lambda v: _lit_to_value(self, v)

[docs] def checkValue(self, value):
 """
 Check whether the (Python) value abides to the constraints defined by the current facets.

 :param value: The value to be checked.
 :rtype: bool
 """
 for method in self.check_methods:
 if not method(self, value):
 return False
 return True

 def _check_min_exclusive(self, value):
 """
 Check the (python) value against min exclusive facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if self.minExclusive is not None:
 return self.minExclusive < value
 else:
 return True

 def _check_min_inclusive(self, value):
 """
 Check the (python) value against min inclusive facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if self.minInclusive is not None:
 return self.minInclusive <= value
 else:
 return True

 def _check_max_exclusive(self, value):
 """
 Check the (python) value against max exclusive facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if self.maxExclusive is not None:
 return value < self.maxExclusive
 else:
 return True

 def _check_max_inclusive(self, value):
 """
 Check the (python) value against max inclusive facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if self.maxInclusive is not None:
 return value <= self.maxInclusive
 else:
 return True

 def _check_min_length(self, value):
 """
 Check the (python) value against minimum length facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if isinstance(value, rdflibLiteral):
 val = str(value)
 else:
 val = value
 if self.minLength is not None:
 return self.minLength <= len(val)
 else:
 return True

 def _check_max_length(self, value):
 """
 Check the (python) value against maximum length facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if isinstance(value, rdflibLiteral):
 val = str(value)
 else:
 val = value
 if self.maxLength is not None:
 return self.maxLength >= len(val)
 else:
 return True

 def _check_length(self, value):
 """
 Check the (python) value against exact length facet.
 @param value: the value to be checked
 @rtype: boolean
 """
 if isinstance(value, rdflibLiteral):
 val = str(value)
 else:
 val = value
 if self.length is not None:
 return self.length == len(val)
 else:
 return True

 def _check_pattern(self, value):
 """
 Check the (python) value against array of regular expressions.
 @param value: the value to be checked
 @rtype: boolean
 """
 if isinstance(value, rdflibLiteral):
 val = str(value)
 else:
 val = value
 for p in self.pattern:
 if p.match(val) is None:
 return False
 return True

 def _check_lang_range(self, value):
 """
 Check the (python) value against array of language ranges.
 @param value: the value to be checked
 @rtype: boolean
 """
 if isinstance(value, rdflibLiteral):
 lang = value.language
 else:
 return False
 for r in self.langRange:
 if not _lang_range_check(r, lang):
 return False
 return True

owlrl.Closure

The generic superclasses for various rule based semantics and the possible extensions.

Requires: RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231].

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

Classes

	Core(graph, axioms, daxioms[, rdfs])

	Core of the semantics management, dealing with the RDFS and other Semantic triples.

owlrl.DeductiveClosure

	
class owlrl.DeductiveClosure(closure_class, improved_datatypes=True, rdfs_closure=False, axiomatic_triples=False, datatype_axioms=False)[source]

	Entry point to generate the deductive closure of a graph. The exact choice deductive
closure is controlled by a class reference. The important initialization parameter is the closure_class, a Class
object referring to a subclass of Closure.Core. Although this package includes a number of such subclasses
OWLRL_Semantics, RDFS_Semantics, RDFS_OWLRL_Semantics, and OWLRL_Extension, the user can use his/her
own if additional rules are implemented.

Note that owl:imports statements are not interpreted in this class, that has to be done beforehand on the graph
that is to be expanded.

	Parameters

	
	closure_class (subclass of Closure.Core) – A closure class reference.

	improved_datatypes (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the improved set of lexical-to-Python conversions should be used for datatype handling. See the introduction for more details. Default: True.

	rdfs_closure (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the RDFS closure should also be executed. Default: False.

	axiomatic_triples (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether relevant axiomatic triples are added before chaining, except for datatype axiomatic triples. Default: False.

	datatype_axioms (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether further datatype axiomatic triples are added to the output. Default: false.

	Variables

	improved_datatype_generic – Whether the improved set of lexical-to-Python conversions should be used for datatype handling in general, I.e., not only for a particular instance and not only for inference purposes. Default: False.

	
__init__(closure_class, improved_datatypes=True, rdfs_closure=False, axiomatic_triples=False, datatype_axioms=False)[source]

	Initialize self. See help(type(self)) for accurate signature.

Methods

	__init__(closure_class[, …])

	Initialize self.

	expand(graph)

	Expand the graph using forward chaining, and with the relevant closure type.

	use_improved_datatypes_conversions()

	Switch the system to use the improved datatype conversion routines.

	use_rdflib_datatypes_conversions()

	Switch the system to use the generic (RDFLib) datatype conversion routines

Attributes

	improved_datatype_generic

	

owlrl

This module is a brute force implementation of the ‘finite’ version of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and of OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules] on the top
of RDFLib (with some caveats, see below). Some extensions to these are also implemented.

Brute force means that, in all cases, simple forward chaining rules are used to extend (recursively) the incoming graph
with all triples that the rule sets permit (ie, the “deductive closure” of the graph is computed).
There is an extra options whether the axiomatic triples are added to the graph (prior to the forward chaining step).
These, typically set the domain and range for properties or define some core classes.
In the case of RDFS, the implementation uses a ‘finite’ version of the axiomatic triples only (as proposed, for example,
by Herman ter Horst). This means that it adds only those rdf:_i type predicates that do appear in the original graph,
thereby keeping this step finite. For OWL 2 RL, OWL 2 does not define axiomatic triples formally; but they can be
deduced from the OWL 2 RDF Based Semantics [http://www.w3.org/TR/owl2-rdf-based-semantics/] document and are listed in Appendix 6 (though informally).

Note

This implementation adds only those triples that refer to OWL terms that are meaningful for the OWL 2 RL case.

Package Entry Points

The main entry point to the package is via the DeductiveClosure class. This class should be
initialized to control the parameters of the deductive closure; the forward chaining is done via the
L{expand<DeductiveClosure.expand>} method.
The simplest way to use the package from an RDFLib application is as follows:

graph = Graph() # creation of an RDFLib graph
...
... # normal RDFLib application, eg, parsing RDF data
...
DeductiveClosure(OWLRL_Semantics).expand(graph) # calculate an OWL 2 RL deductive closure of graph
 # without axiomatic triples

The first argument of the DeductiveClosure initialization can be replaced by other classes, providing different
types of deductive closure; other arguments are also possible. For example:

DeductiveClosure(OWLRL_Extension, rdfs_closure = True, axiomatic_triples = True, datatype_axioms = True).expand(graph)

This will calculate the deductive closure including RDFS and some extensions to OWL 2 RL, and with all possible axiomatic
triples added to the graph (this is about the maximum the package can do…)

The same instance of DeductiveClosure can be used for several graph expansions. In other words, the
expand function does not change any state.

For convenience, a second entry point to the package is provided in the form of a function called
convert_graph(), that expects a directory with various options, including a file name. The function
parses the file, creates the expanded graph, and serializes the result into RDF/XML or Turtle. This function is
particularly useful as an entry point for a CGI call (where the HTML form parameters are in a directory) and is easy to
use with a command line interface. The package distribution contains an example for both.

There are major closure type (ie, semantic closure possibilities); these can be controlled through the appropriate
parameters of the DeductiveClosure class:

	using the RDFS_Semantics class, implementing the RDFS semantics [http://www.w3.org/TR/rdf-mt/].

	using the OWLRL.OWLRL_Semantics class, implementing the OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

	using CombinedClosure.RDFS_OWLRL_Semantics class, implementing a combined semantics of RDFS semantics [http://www.w3.org/TR/rdf-mt/] and OWL 2 RL [http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules].

In all three cases there are other dimensions that can control the exact closure being generated:

	for convenience, the so called axiomatic triples (see, eg, the axiomatic triples in RDFS [http://www.w3.org/TR/rdf-mt/#rdfs_interp] are, by default, I{not} added to the graph closure to reduce the number of generated triples. These can be controlled through a separate initialization argument.

	similarly, the axiomatic triples for D-entailment are separated.

Some Technical/implementation aspects

The core processing is done in the in the Closure.Core class, which is subclassed by the
RDFSClosure.RDFS_Semantics and the OWLRL.OWLRL_Semantics classes (these two are then, on their turn,
subclassed by the CombinedClosure.RDFS_OWLRL_Semantics class). The core implements the core functionality of
cycling through the rules, whereas the rules themselves are defined and implemented in the subclasses. There are also
methods that are executed only once either at the beginning or at the end of the full processing cycle. Adding axiomatic
triples is handled separately, which allows a finer user control over these features.

Literals must be handled separately. Indeed, the functionality relies on ‘extended’ RDF graphs, that allows literals
to be in a subject position, too. Because RDFLib does not allow that, processing begins by exchanging all literals in
the graph for bnodes (identical literals get the same associated bnode). Processing occurs on these bnodes; at the end
of the process all these bnodes are replaced by their corresponding literals if possible (if the bnode occurs in a
subject position, that triple is removed from the resulting graph). Details of this processing is handled in the
separate Literals.LiteralProxies class.

The OWL specification includes references to datatypes that are not in the core RDFS specification, consequently not
directly implemented by RDFLib. These are added in a separate module of the package.

Problems with Literals with datatypes

The current distribution of RDFLib is fairly poor in handling datatypes, particularly in checking whether a lexical form
of a literal is “proper” as for its declared datatype. A typical example is:

"-1234"^^xsd:nonNegativeInteger

which should not be accepted as valid literal. Because the requirements of OWL 2 RL are much stricter in this respect,
an alternative set of datatype handling (essentially, conversions) had to be implemented (see the XsdDatatypes
module).

The DeductiveClosure class has an additional instance variable whether
the default RDFLib conversion routines should be exchanged against the new ones. If this flag is set to True and
instance creation (this is the default), then the conversion routines are set back to the originals once the expansion
is complete, thereby avoiding to influence older application that may not work properly with the new set of conversion
routines.

If the user wants to use these alternative lexical conversions everywhere in the application, then
the DeductiveClosure.use_improved_datatypes_conversions() method can be invoked.
That method changes the conversion routines and, from that point on, all usage of DeductiveClosure instances
will use the improved conversion methods without resetting them. Ie, the code structure can be something like:

DeductiveClosure().use_improved_datatypes_conversions()
... RDFLib application
DeductiveClosure().expand(graph)
...

The default situation can be set back using the
DeductiveClosure.use_rdflib_datatypes_conversions() call.

It is, however, not required to use these methods at all. I.e., the user can use:

DeductiveClosure(improved_datatypes=False).expand(graph)

which will result in a proper graph expansion except for the datatype specific comparisons which will be incomplete.

	Requires:

	
	RDFLib [https://github.com/RDFLib/rdflib], 4.0.0 and higher.

	rdflib_jsonld [https://github.com/RDFLib/rdflib-jsonld]

License: This software is available for use under the W3C Software License [http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231]

Organization: World Wide Web Consortium [http://www.w3.org]

Author: Ivan Herman [http://www.w3.org/People/Ivan/]

Functions

	convert_graph(options[, closureClass])

	Entry point for external scripts (CGI or command line) to parse an RDF file(s), possibly execute OWL and/or RDFS closures, and serialize back the result in some format.

	interpret_owl_imports(iformat, graph)

	Interpret the owl import statements.

	return_closure_class(owl_closure, …[, …])

	Return the right semantic extension class based on three possible choices (this method is here to help potential users, the result can be fed into a DeductiveClosure instance at initialization).

Classes

	DeductiveClosure(closure_class[, …])

	Entry point to generate the deductive closure of a graph.

 _images/OWL-RL.png

nav.xhtml

 Table of Contents

 		
 OWL-RL Documentation

 		
 Installation

 		
 Usage

 		
 Indices and tables

 		
 owlrl

 		
 Package Entry Points

 		
 Some Technical/implementation aspects

 		
 Problems with Literals with datatypes

 		
 AxiomaticTriples

 		
 Closure

 		
 CombinedClosure

 		
 DatatypeHandling

 		
 AltXSDToPYTHON Table

 		
 owlrl

 		
 Package Entry Points

 		
 Some Technical/implementation aspects

 		
 Problems with Literals with datatypes

 		
 OWLRLExtras

 		
 RDFSClosure

 		
 RestrictedDatatype

 		
 XsdDatatypes

_static/OWL-RL.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

